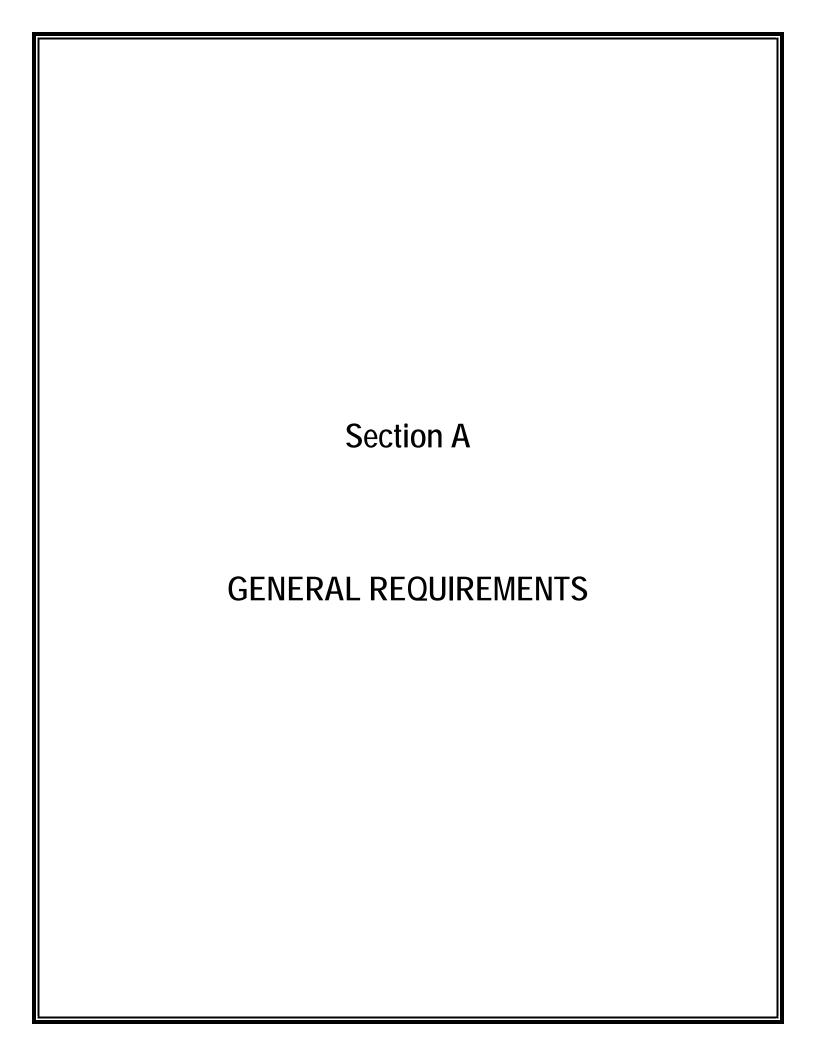


Airport Construction

Documentation Manual


June 2014

Section A – G	eneral Requirements	
Use of the	ne BCM System for Documentation	A-1
Project [Diary (AER 36)	A-1
The Qua	antity Book	A-2
Field Ins	spection Reports/Source Documentation	A-4
Inspecto	r's Daily Report (IDR) (AER 628)	A-4
Field Bo	oks	A-4
Paving S	Summary Forms	A-5
	nd Dates	
Plan Qu	antity Acceptance (AER 981)	A-5
Progress	s Documentation	A-7
Items that	at must be Final Measured	A-8
	Computers for Final Documentation	
Extra W	ork (Section 90-05)	A-9
	Allowance	
	m Payment	
	th "Maximum Pay" Percentages	
	ecks	
Thicknes	ss Determination Schedule and Depth Check Frequency	A-11
	ntation of Pay Quantities Based on Weight Tickets	
	Small Quantities	
Roundin	g	A-20
	cumentation	
Docume	ntation Review by the Division	A-21
Section B _ F	inal Documentation Requirements by Pay Unit	R_1
Section B – i	mai bocumentation requirements by r ay onit	۱-۱ ط
Section C – F	inal Documentation Requirements by Pay Item	
	e of Materials Inspection	
	•	
Section D - R	eference Tables	
Estimati	ng Daily Earth Volumes with Load Counts	D-1
Order of	Arithmatic Operations	D-7
Mathem	atical Formulas Used by IDOT	D-8
Example	es for Calculation of Area	D-11
Recomn	nended Checking Procedures	D-12
0 1' E E	and Dark CH Taller	
	rench Backfill Tables	- 4
	Backfill Table for Circular Concrete Pipe	
	Backfill Table for Elliptical Pipes	
I rench E	Backfill Table for Arch Pipe	E-10
Section F – D	ocumentation Examples	
INDEX (OF EXAMPLES	
	t Engineer's Diary (AER 36)	F-1
	over Sheet (AER 35)	
Quantity	Book, Cover Sheet (BC 623)	F-3
	Book Sheet (BC 625)	
	pr's Daily Report (AER 628), Acre	
	or's Daily Report (AER 628), Cubic Yard & Linear Foot	

Inspector's Daily Report (AER 628), Cubic Yard	F-9
Inspector's Daily Report (AER 628), Lump Sum	
Inspector's Daily Report (AER 628), Gallon	
Inspector's Daily Report (AER 628), Square Foot	F-12
Inspector's Daily Report (AER 628), Square Yard	
Inspector's Daily Report (AER 628), Ton	
Field Book, Inside Cover & Index	F-15
Hot-Mix Asphalt (HMA) Paving Daily Record (AER 2529)	F-16
Hot-Mix Asphalt (HMA) Paving Daily Record, Specification Reference	
Hot-Mix Asphalt (HMA) Paving Daily Record, PFC Specification Reference	F-20
PCC Paving Daily Record (AER 2531)	F-22
PCC Paving Daily Record, Specification Reference	F-23
Agreement on Accuracy of Plan Quantities (AER 981)	F-24
Extra Work Daily Report (AER 635)	F-25
Sample of a Force Account Bill	F-29
Equipment Watch Rate	F-31
Equipment Expense Rate Data (BC 2370)	F-32
Authorization of Contract Changes (AER 51)	F-33
Material on Hand Affidavit (AER 49)	F-35
Statement of Material on Hand (AER 131)	F-36
Truck Tare Weights (AER 1465)	F-39
Independent Truck Weight Check (AER 2367)	F-40
Ticket Tape	F-41

Section G – National Pollutant Discharge Elimination System (NPDES) Permit Management (Under Construction)

Section H – As-Built Record Drawings (Under Construction)

The policies contained in this section represent the minimum pay item quantity documentation required for airport construction projects administered by the Illinois Department of Transportation, Division of Aeronautics (Division).

USE OF THE BCM SYSTEM FOR DOCUMENTATION

Project records shall be maintained on a system known as the Bureau of Construction Management System (BCM). BCM gives the Resident Engineer/Technician (Resident) a Quantity Book, as well as Construction Reports (pay estimates).

PROJECT DIARY (AER 36) Example, page F-1

The Project Diary is one of the most essential records kept on the job. The Resident or a designated representative is required to keep a daily diary on each contract. The diary forms shall be kept in a three-ring binder, and this will constitute the official project diary.

The diary shall be in the format illustrated in Attachment F of the Agreement for Architectural, Engineering and Planning Services for Airports. There must be a separate diary for each contract. Entries must start at the beginning of the binder. All entries must be in order by date. All entries throughout the diary must be in ink.

AER 35, Diary Cover Sheet, shall be the first page in the diary. The cover sheet must include the year, the name and signature of the Resident (and designated representative, if applicable), the complete official designation of the project, and the name of the Contractor. (Example, page F-2). This may seem nonessential, but diaries have been thrown out of court because they were not properly identified.

The Division's return address must be noted on the cover sheet so that it may be returned if ever lost: 1 Langhorne Bond Drive, Springfield, IL 62707-8415.

A list of all personnel assigned to the job or who work on the job shall be entered on the cover sheet of the diary (print full name). Each person shall put his/her initials after his/her name.

An entry must be made in the project diary for each day of the project, including weekends and holidays, except when the project is officially suspended. Entries must begin on the day the Contractor begins work or 10 days after the official Notice to Proceed, whichever is first.

The diary need not repeat the detailed entries reported on AER 628 Inspector's Daily Report (IDR) but should contain only general information about these operations. The diary should contain a day to day record of all significant items relating to the project. Since it may become important evidence in future claims or litigation it is essential that the diary be complete.

The diary shall not be used as a Quantity Book or field book; only a reference to the work in progress is sufficient.

A complete legible diary will be accepted in court if the need arises. Diary entries made by the Resident do not need to be signed or initialed. Only entries in a project diary made by someone other than the Resident or designated representative need to be signed by the person making that entry.

Information entered in the diary must never be erased, whited-out, or eradicated in any manner. To correct information already entered, cross out information to be changed. The information changed should be initialed and dated by the person making the change.

A partial list of items to be noted in a project diary is:

- 1. Weather
- 2. Progress Schedule Controlling Item of Work and actual work done by the Contractor's forces during the day.
- 3. A workable/non-workable statement, based solely on the controlling item.
- 4. Number of persons working.
- 5. Calendar Days charged and reason for partial or non-working/workable days.
- 6. Safety Plan inspections and changes.
- 7. Important orders, discussions, or meetings with Contractor(s).
- 8. Official visitors and inspections.
- 9. Opening or closing runways, taxiways, or other airport facilities.
- 10. Work or materials rejected and reasons.
- 11. Time of shutting down or resuming of work and explanations.
- 12. Account of any time spent by the Contractor's workers or equipment on disputable items of work.
- 13. Length and cause of any delay.
- 14. Arrival and departure of major equipment.
- 15. Record of important e-mails, faxes, and telephone calls.
- 16. Unusual conditions, if any, such as high water, bridge or pavement failures, slides, accidents/injuries, damage to aircraft as a result of construction, etc.
- 17. Approval for extra work.

Copies of daily project diary entries shall be submitted to the Division on a bi-weekly basis. At the completion of the project, the diary shall be filed as a part of the permanent job records.

THE QUANTITY BOOK

Instructions pertaining to contract quantities are found in Sections 40-02 through 40-04 and Section 90 in the Standard Specifications for Construction of Airports (Specifications) and the Method of Measurement and Basis of Payment articles for each construction pay item.

For each contract you will be issued a Quantity Book in which contract items are to be posted. The Quantity Book is to be considered the cornerstone of the complete record keeping structure you will be building in the field. The daily quantities posted here will be referred to when each pay estimate is prepared.

Quantity Book Cover Sheet (BC 623) – Example, page F-3. The cover sheet in the Quantity Book shall either be filled in by a rubber stamp, typewriter or neatly printed in ink. For state-run projects, the "Address" at the bottom of the page refers to the Illinois Division of Aeronautics, 1 Langhorne Bond Drive, Springfield, IL 62707-8415.

Index of Sheets (BC 624) – The computerized index is prepared in the same item-to-item order as the first pay estimate. If additional line items are later added to the contract, they can be added at the end of the index, under the appropriate fund type and pay item number.

Quantity Sheet (BC 625) – Example, pages F-4, F-5, and F-6. The job designation block and the upper left-hand side of Form BC 625 will be automatically filled in by computer following project award. A separate sheet will be provided for each pay estimate line item. The Division's Contract Section has extra blank forms, which are to be used for added pay estimate line items, or if additional pages are needed for any established line item. These extra sheets will require the Resident to fill in by hand the complete job designation and quantity information. The lines provided for authorization additions and deductions are to be completed as authorizations are submitted and approved. The final total quantity in the authorization box should be identical to the final measured and approved amount completed and accepted.

The column headed "Date" should be the dates the quantity was placed.

The "Station to Station, Location, or Description" shall describe the actual area/location where the item was placed.

Quantities placed are to be kept <u>daily</u> when the particular pay item is constructed. The column "To Date" shall show the cumulative total of the item as additional days of work are entered. This tabulation procedure will facilitate the checking of material inspection reports and plan quantities for additions and deductions so that the Authorization of Contract Changes (AER 51, example, pages F-32 and F-33) may be kept current.

When the pay item is complete, the quantity shall be marked **final** after the last entry on the quantity book page. (Example, page F-4)

"Evidence of Material Inspection" – An entry must be made in this column each time an entry is made in the quantity column. Evidence of material inspection, as described in the *Manual for Documentation of Airport Materials*, shall be items such as a State of Illinois stamp number, inspection report, plant report, or other information, written or visual, to indicate that the material is satisfactory. Acceptable entries can be found in Section C of this manual. The evidence of inspection required in the *Manual for Documentation of Airport Materials* should be strictly adhered to for both Progress and Final Documentation and must lead to a verifiable source of the information required. All delivery tickets shall be retained in the project files.

Also, the Division's project Statement of Final Materials Certification, which is prepared during project closeout, can be expedited if the inspector would list under "Evidence of Material Inspection" such additional information as: the name of the plant, quarry or manufacturer of the material together with any identifying marks, imprints, or tags on the material. In any case, the name of the producer of the material must either be noted in this column, or cross- referenced in the project files. For example, if evidence of material inspection is noted only as "Approved Source & Tickets," then the producer's name must be noted on the delivery tickets. If the producer's name is not noted on the tickets, then it must be noted with the evidence of material inspection in the Quantity Book.

"Source of Progress Documentation" – Except for Lump Sum, Each, Pair and Calendar Month items, each entry in the Quantity Book must be supported by either progress or final documentation. This column is to be used to cross reference the source document (i.e., IDR

number, Field Book and page number, etc.). The Quantity Book is the start of the audit trail for all information required to support all progress and final payments for each item.

"Source of Documentation for Final Quantity" – Except for Lump Sum, Each, Pair and Calendar Month items, this area must sufficiently identify the source documents which support the final quantity for the subject pay item. This area may also be used to cross-reference to other supporting documentation such as depth checks. **Please note that reference to one location, if possible, greatly simplifies the process**.

FIELD INSPECTION REPORTS/SOURCE DOCUMENTATION

Each inspector is to provide a concise, accurate, daily account of the contractor's work so it may be recorded and furnished to the Resident at the end of each working day. This record is to be completed by the inspector actually doing the inspection for the Resident and filed in the project records. This record may be documented using any of the appropriate documents listed under Final Documentation, page A-20.

Source documentation is required for all quantities of work for which payment will be made. The source document shall contain all information necessary to identify the contractor or subcontractor performing the work, date work was completed, location of work ("Plan Locations" is **not** sufficient), quantity of work completed and depth checks (if required). The document can also be used to record material inspection. The source document shall also contain initials and dates for all parties involved in inspecting and measuring the work and calculating and checking the quantity of work completed. This information may be documented using any of the appropriate documents listed under Final Documentation, page A-20.

INSPECTOR'S DAILY REPORT (IDR) (AER 628)

When an Inspector's Daily Report (IDR) (Example, pages F-7 through F-14) is used to document the work, the completed IDRs shall be kept in chronological order and filed in a binder. If an IDR other than IDOT's AER 628 is used, it must contain all of the same information covered on AER 628. Additionally, **all** data used to arrive at the reported quantities must be shown.

When a field book is used to document a pay item, all quantities for that particular pay item shall be kept in consecutive pages in the field book with page totals, and the field book index kept up to date.

When a calculation file is used to document a pay item, all quantities for a particular pay item shall be kept in consecutive pages and filed in a binder, with pay item number and cross references clearly marked.

When weight tickets are used to document a pay item, all tickets pertaining to that pay item shall be kept separately from other project tickets (i.e. separate envelopes/folders).

FIELD BOOKS

All field books that are to become part of the permanent job records will conform to the following:

1. Field books will be hard cover, bound books.

- 2. The inside cover must show the complete project designation (job stamp) and the return address for the Division.
- 3. If more than one field book will be included in the project records, the cover must also show identification (for example, F.B. #1) for cross-referencing purposes. The outside cover shall also show the project designation.
- 4. Field books shall be indexed. The index (page number reference) must be up to date at all times, and shall contain coded pay item number(s) and description(s) as applicable. (Example, page F-15).

Use of a field book is required for permanent survey records, layout records and cross-sections.

PAVING SUMMARY FORMS

Use of the following forms is required for each day of paving:

- 1. PCC Paving Daily Record AER 2531 (Example, pages F-22 F-23)
- 2. Hot-Mix Asphalt (HMA) Paving Daily Record AER 2529 (Example, pages F-16 F-21)

INITIALS AND DATES

All documents will include the initials of the person(s) who performed each of the tasks involved in inspecting and documenting the work, as well as the date(s) each task was performed. "Inspected by" (when applicable), "Measured by", "Calculated by" and "Checked by" initials and dates are required, and must be hand-written on all source documentation. Each person will initial his/her own work, except when more than one person performs the same task, one of those persons may also record the initials of each of the other persons involved in that task.

When a document refers to another document, the referencing document does not need to repeat the initials and dates shown on the referenced document.

PLAN QUANTITY ACCEPTANCE (AER 981) Example, page F-24

As stated in Section 90-02, payment to the Contractor will be made only for the actual quantities of work performed and accepted or materials furnished in accordance with the contract. Most final pay quantities will be based directly on measurements and calculations performed by the Resident in the field. However, for a number of pay items, the Method of Measurement specified in the contract documents allows the Division and the Contractor to agree in writing that the plan quantity is accurate and will be used for the final quantity. The agreement is based on three points:

- 1. The plans accurately reflect the existing jobsite conditions, insofar as existing conditions will affect the final quantity of the agreed to items,
- 2. the plan quantity was accurately calculated; and
- 3. the work will be built to the lines, grades and dimensions shown on the plans, insofar as they pertain to the pay quantity of the agreed to items.

Form AER 981, Agreement on Accuracy of Plan Quantities, is to be used for this agreement. This form lists most of the items in the Specifications for which agreement to contract quantities is permitted. Extra spaces are available on the form for other items allowed by the contract documents. In accordance with the Specifications, this agreement must be in writing for any given item before any work is started which would affect the measurements for that item.

The main purpose of the AER 981 is to save the Resident time in documenting the accuracy of the final quantity paid to the contractor. The AER 981 is an acknowledgment by the Contractor and the Division for certain pay items that the plan quantity is accurate.

Even with the executed AER 981, however, errors are still possible, and the Specifications make two provisions for this. First, if the plans have been altered or some other development arises which calls into question the applicability of the plan quantity, either party has the right to request in writing within 10 days and thereby cause the quantities involved to be measured.

Second, if an error has been discovered after the work has started, then that portion of the quantity which is affected by the error will be measured and the final quantity will be adjusted accordingly. In order for this provision to apply, however, the plans must distinguish where the individual quantities apply. This situation could arise, for example, if the plans indicate the quantity of trench backfill required for each run of storm sewer. If the layout for one of the runs is altered, then the trench backfill would have to be measured for that run only, and the final quantity for trench backfill would be adjusted by the measured difference for that run.

For items agreed to, the source of documentation for final quantity noted in the Quantity Book will be "AER 981." If errors are found or changes are made to the plan quantity after the work has begun on an agreed item, adjustments to the plan quantity must be documented with appropriate measurements. The final pay quantity will then be the agreed plan quantity plus or minus the documented adjustment to the plan quantity. In this case, the source of documentation for final quantity noted in the Quantity Book will be the AER 981, as well as the measurements and calculations used to document the adjustment to plan quantity.

Even though the AER 981 is signed and approved by the <u>Division</u>, the Resident is responsible for administering the agreement correctly. When the Resident cites the AER 981 as the source of documentation for the final quantity, the Resident is stating that the three points mentioned above have been satisfied. The AER 981 is merely an alternate means of documenting the accuracy of final pay quantities; it does not mean that the Resident can ignore the actual quantities of work performed.

As the work progresses on the AER 981 pay items, the Resident shall document how the estimated progress quantities compare to the plan quantities. It should be noted that the Resident is required to use and document an acceptable method for estimating quantities for progress payments. If, during construction, the estimated payments are disproportionate to the Contractor's actual progress on the items, then the Resident shall investigate the reason for the discrepancy. Work on the item in question shall cease until the reason for the discrepancy is determined.

For some of the items for which the Specifications allow agreement to contract quantities, such agreement may not be appropriate in all situations. In general the following restrictions apply:

- Granular backfill, such as PGE, for undercuts must be measured by before and after cross sections. If the plan quantity for excavation includes undercut for PGE, then the excavation quantity may be agreed to only if the plans distinguish the undercut quantity from the rest of the excavation. In this case, the estimated undercut quantity should be noted on the AER 981, and it will be adjusted for the actual measured quantity.
- 2. If the plans contain both earth and rock excavation, and they are contiguous, plan quantities cannot be accepted for the rock excavation unless the unit prices for earth and rock excavation are the same. Otherwise, it will be necessary for the actual quantity of rock excavation to be determined by before and after cross sections. Then, the previously agreed plan quantity of earth excavation will be adjusted by the measured difference in rock excavation. As with the undercut example above, the plan estimate for rock excavation should be noted on the AER 981.
- 3. Plan quantity shall not be agreed to for any item for which the unit of measure is TON.

PROGRESS DOCUMENTATION

In order to properly document the quantities shown on partial payment estimates, progress entries in the Quantity Book are required. These daily quantities can be based upon either estimates or final measurements. In either case, progress documentation must be kept on file (preferably on the Inspector's Daily Report or in a field book) to indicate how the quantity was established. Make cross-reference notes in the Progress Documentation Source column of the Quantity Book.

The following guidelines can be used in establishing <u>estimated</u> quantities. Quantities that are estimated should be labeled as such. If a method other than one of those shown below is used to estimate a quantity, the method must be documented, and be clear and reasonable as determined by good engineering practice. **Items that are estimated must be final measured before final payment is made.**

Excavation Pay Items – cubic yards (CY) – Example, pages D-1 & F-9

- 1. Estimate percentages of plan balance quantities;
- 2. Upgrade quantities as balance volumes are completed, or
- 3. Use load counts, when available. Use 80% of struck capacity (see Section D for capacities).
- 4. Other

Concrete Items – cubic yards (CY)

- 1. Extract the daily volumes from your computation check file, or
- 2. Use a reasonable percentage (typically 90%) of actual delivered concrete.
- 3. Upgrade each completed structural item with the plan Bill-of-Materials quantity.
- 4. Other

Reinforcement Bars – pound (LB)

- 1. Establish a LB/CY factor from plan quantities; use it as concrete volumes are placed or as the bars are tied in place.
- 2. Upgrade each completed structural item with the plan Bill-of-Materials quantity.
- 3. Other

Pipe Pay Items – linear foot (LF)

- 1. Count and record pipe sections as installed.
- 2. Upgrade completed runs with plan quantities.

Length and Area Pay Items – LF, square yard (SY), and square foot (SF)

- 1. Base computations on paced dimensions.
- 2. Station to Station staked dimensions.
- 3. Plan quantity schedules.

Each and Lump Sum Items

If payment is to be made when the item is partially completed, record station or location, date and estimated percentage of completion in the Quantity Book.

Topsoil Excavation and Placement

Since this pay item pertains to that material obtained from within the limits of the airport and is measured in cubic yards in its original position, for progress documentation purposes it may be necessary to pay 50% of the volume computed by method of average end areas in its original position upon completion of the excavation. The remaining 50% of the volume shall be paid after the placing and finishing of the topsoil to the lines, grades, and the minimum thickness shown on the plans.

ITEMS THAT MUST BE FINAL MEASURED

As previously stated, when progress documentation for an item is based on estimates that item must be final measured before final payment is made. While payments for most items can be estimated under some circumstances, some types of work require that final measurements be taken each day. Information needed to determine final quantities for such pay items must be obtained at the time the work is done as it will be difficult or impractical to compute quantities with acceptable accuracy at a later date. Examples: removal items, piling, most weight ticket items, trench backfill, and similar items which, when covered, are impossible to measure later.

USE OF COMPUTERS FOR FINAL DOCUMENTATION

The use of computers to determine final quantities is encouraged especially for excavation quantities, reinforcement bars and area items. If computer printouts are used to support pay item quantities paid, the following information is required for proper documentation:

- A. Compiled calculation programs verified and approved for use by the Division
 - 1. Pay item number, description, and contract number
 - 2. Printout of the input data, initialed and dated by the person who checked the input
 - 3. Hard-copy of the results

B. Electronic spreadsheets

- 1. Printout of the spreadsheet. The printout must show:
 - a. pay item number and description
 - b. the input data
 - c. description of how the results are calculated (e.g. sample formulas)
 - d. calculation results (if applicable)
 - e. cross-references to any other referenced documents

- 2. The hard-copy of the spreadsheet must be initialed and dated by:
 - a. the person who prepared the spreadsheet, and
 - b. the person who checked the spreadsheet printout or the person who checked the formulas embedded in the spreadsheet. (i.e. "Prepared By:" and either "Checked By" or "Formulas Checked By" initials and dates.)

In addition, if field measurements are entered directly in the spreadsheet, the printout must include "Measured By" initials and dates.

- C. Other programs not verified and approved for use by the Division (i.e. field survey data coupled with the use of CADD software to calculate final quantities). Because the Division has no way of knowing the accuracy of other programs, the following general rules apply:
 - 1. A record of the original field measurements (if applicable) must be included in the project files;
 - 2. The measurements, or a computer-interpolated version of the measurements, must be in the same format as would normally be required if the measurement had been recorded manually (e.g. station, offset and elevation for cross-section data, or length and width for rectangular field measurements). In other words, the raw data must be in, or be put in, a format that could be understood by the reviewer;
 - 3. The program must be identified, including version numbers;
 - 4. Input data, if entered manually, must be checked;
 - 5. The preparer may be required to demonstrate that the results are correct. This may be accomplished by manually calculating a sample of the results, under the supervision of the Division;
 - 6. All other documentation requirements shall apply.

The documentation for each item shall be kept on file and marked with the item number for easy cross reference.

EXTRA WORK (Section 90-05) Example, pages F-25 through F34 (See *Equipment Watch Rental Rate Blue Book at www.equipmentwatch.com*)

Agreed Unit Price Items:

To establish a new unit price item will require a letter of agreement from the Contractor and an answering authorization from the Engineer.

Force Account:

The Engineer must have copies of:

- 1. Proper authorization by the Division (approval letter).
- 2. **Daily** copies of Form AER 635, Extra Work Daily Report, prepared by the Resident or Inspector, jointly signed with the contractor, recording labor, equipment, and material used.
- 3. Contractor's bill. The format should be in accordance with the Specifications and clearly indicate actual costs (with proof) and applicable allowed mark-ups.
- 4. Balancing authorization (AER 51), with all AER 635 forms and **back-up information** attached.

MATERIAL ALLOWANCE Example, pages F-35 through F-38

Payment may be made for materials such as structural steel on the basis of a material allowance if the Contractor requests payment for materials in storage. (See Article 90-08 of the Specifications).

The pay estimate should be accompanied by Form AER 49, Materials on Hand Affidavit; Form AER 131, Statement of Material on Hand; and material supplier invoices and freight bills.

Before payment can be made to the Contractor we need copies of proof that the Contractor has paid for the material. Rubber stamp "Paid" will not do. To pay the Contractor for the new materials on hand, the pay estimate must be accompanied by AER 49, AER 131, a copy of canceled check or paid invoice signed and dated, and material supplier invoices & freight bills. To adjust for material used as work progresses, submit AER 131 with the pay estimate as backup for remaining material on hand.

MAXIMUM PAYMENT Example, page F-4

Throughout the Specifications there are numerous references to pay items on which final payment cannot be made for more than a maximum percentage over awarded and/or adjusted plan quantity. The following is a listing of Pay Items and the applicable percentage that limits maximum payment. (Generally, maximum payment percentages apply only to those Pay Items paid for on the basis of volume or weight.)

ITEMS WITH "MAXIMUM PAY" PERCENTAGES

EMULSIFIED ASPHALT		GAL	105%
AGGREGATE BASE COURSE		TON	108%
BITUMINOUS CONCRETE BASE	COURSE	TON	103%
BITUMINOUS CONCRETE SURFA	ACE COURSE	TON	103%
BITUMINOUS MATERIALS PRIME	COAT	GAL	105%
BLOTTER AGGREGATE	(NOT AGGREGATE PRIME COAT)	TON	110%
BITUMINOUS MATERIAL	(COVER & SEAL COATS)	GAL	105%
COVER COAT AGGREGATE		TON	110%
SEAL COAT AGGREGATE		TON	110%
BITUMINOUS MATERIALS	(ROAD MIX OR SEAL COAT)	GAL	105%
GRANULAR EMBANKMENT		TON	108%
POROUS GRANULAR EMBANKM	ENT	TON	108%

Daily yield checks should be run on these items so that the Contractor can be notified when he/she is exceeding the maximum specified amounts of quantity. The limit of the final amount paid shall be plan quantity plus (or minus) theoretical quantities approved by authorization, multiplied by the above percentage.

YIELD CHECKS

A yield check is a calculation to determine if the correct amount of material was used in the work:

Frequent yield checks are a good engineering practice, and they may help uncover problems in the work early in the project. Yield checks documented by inspectors provide a timely and valuable source of information to the Resident.

While performing yield checks are highly recommended for all materials used in the work, they are required to be documented for the following items:

ItemMinimum FrequencyHMA PavingFrequently, each day of pavingPCC PavingAt end of each day of paving

Also, many items include materials for which the contract specifies the application rate of the material. Ensuring the correct application of such a material is an important part of inspecting and approving the pay item work. The Resident's signature on the pay estimate assures the Division that the materials and procedures used were in accordance with the specifications for each pay item paid for on that estimate. Application rates shall be calculated and documented. There must be enough information in the project records that the application rate can be verified if the need arises.

THICKNESS DETERMINATION SCHEDULE

In order to clarify the requirements for thickness determinations, compiled data from the Specifications is summarized in the Thickness Determination Schedule, page A-11. The Schedule refers to the specification section, the minimum frequency for making checks, the source documents for recording the thickness and the method of measurement. It should be pointed out that the minimum checking frequency may not be sufficient to verify plan thickness and should be increased as conditions dictate. There are many time-honored engineering methods for determining thickness; such as, before and after rod and level shots, before and after stringline measurements, direct probe, and measurements of density holes. All are acceptable; however, blanket statements such as "all sidewalk was 4 inches or deeper" and "all patches were 9 inches" are NOT acceptable. Actual measurements must be recorded. In addition, some items such as full-depth HMA and PCC pavement may require that cores will be taken and measured.

Thickness deficiencies identified by the Resident during construction should immediately be brought to the attention of the Contractor and corrective actions taken. Thickness deficiencies identified during or after placement will be confirmed by coring and will require adjusted prices or removal and replacement in accordance with the Specifications. Large contract deductions or removals are the Division's last resort; therefore, attention to detail including thickness is very important during construction.

The schedule also includes miscellaneous items marked "All Others." This category covers the many square foot, square yard, and linear foot items. Control and documentation of the depth of these items is also very important and should be handled in the same manner as all other items listed.

The location (station and offset etc.) of each thickness measurement should be clearly noted on the source document. The location of the source document, whether it is field books or IDRs, must be clearly indexed and referenced through the Quantity Book.

Thickness determinations are a Division policy requirement. The use of proper procedures for thickness determinations will significantly reduce the chances for unacceptable work.

Type of Construction	Section Preference	Minimum Frequency	Document Record	Method of Measurement
BASE COURSES Agg. Base Course Bit. Base Course Soil Cement	208/209 403 155	1 per 1500 SY 1 per 350 SY * 1 per 1350 SY	F.B., IDR F.B., IDR, AER 2529 F.B., IDR	1/ 1/, 3/ 1/
SUBBASES Subbase Gran Material Bit. Aggregate Mixture Cement Agg. Mixture Pozzolanic Agg. Mixture Cement Agg. Mixture II	** ** ** **	1 per 1350 SY 1 per 350 SY 1 per 350 SY 1 per 350 SY 1 per 350 SY	F.B., IDR F.B., IDR F.B., IDR F.B., IDR F.B., IDR	1/ 1/, 10/ 1/, 9/ 1/, 9/ 1/, 9/
PAVEMENT & SURFAC COURSES Agg. Surface Course PCC Pavement Bit. Concrete Full Depth Porous Friction Course	E 402.06 ** 501 401/403 402	1 per 1350 SY 1 per 350 SY * 1 per 350 SY * 1 per 3000 SY *	F.B., IDR F.B., IDR, AER 2531 F.B., IDR, AER 2529 F.B., IDR, AER 2529	<u>1/</u> <u>1/, 4/, 5/</u> <u>1/, 5/</u> <u>1/, 5/</u>
ALL OTHERS PCC Sidewalk PCC Curb, Gutter, Combination Curb &	501 754	1 per 1000 SF 1 per 250 LF	F.B., IDR F.B., IDR	<u>1</u> /, <u>11</u> /
Gutter PCC Paved Ditch Top Soil Lime Treated Subgrade	754 905 155	1 per 250 LF 1 per 2500 SY 1 per 2000 SY or min. 2 per day	F.B., IDR F.B., IDR F.B., IDR	1/ 12/ 13/

Note: Thickness check shall include the entire typical cross section at the locations designated.

Note: For items using aggregate of class RR3 or larger, the Resident has the option of documenting either depth checks or yield checks. Documenting depth checks is not required for removal-only items.

^{*} This does not pertain to bituminous leveling courses. Cores may be required: In addition to making field thickness measurements, the Construction and Materials Section may require cores to be cut and independent measurements be made. The core results will be the basis for adjustment in unit prices for deficient pavement.

^{**} If specified, follow Specifications for that item.

- 1/ Thickness determinations shall be documented by before and after cross sections or before and after measurements from an established reference elevation such as a stringline, form line or edge of pavement.
- 2/ Intentionally left blank
- 3/ Thickness determinations will be made during and after placement of the material and recorded at the frequency shown in this table. Thin base course, as determined by core measurements, will require an adjustment in the contract unit price.
- 4/ Thickness determinations shall be made during (in the plastic state) and after placement of the material and recorded at the frequency shown in this table. Thin pavement, as determined by core measurements, will require an adjustment in the contract unit price.
- Thickness determinations shall be made after placement of the top lift of bituminous surface course and after placement of the surface course as a minimum requirement. Thickness determinations shall be made at intermediate lifts of the bituminous surface course as required to maintain control of the placement operation. All thickness checks shall be recorded at the frequency shown in this table. Thin pavement, as determined by core measurements, will require an adjustment in the contract unit price.
- 6/ Intentionally left blank
- 7/ Intentionally left blank
- 8/ Intentionally left blank
- 9/ Thickness determinations shall be made during and after placement of the material and recorded at the frequency shown in this table. Subbase areas less than 90% of the plan nominal thickness shall be brought to the nominal thickness by increasing the thickness of the PCC pavement or by removal and replacement with new mixture. When continuously reinforced concrete pavement is to be constructed, correction shall be removal and replacement only. However, the surface elevation of the completed subbase shall not exceed the surface elevation shown on the plans or established by the Engineer by more than 3/16 in.
- 10/ Thickness determinations shall be made during and after placement of the material and recorded at the frequency shown in this table. Subbase areas less than 90% of the plan nominal thickness shall be brought to the nominal thickness by increasing the thickness of the PCC pavement, by placing additional bituminous aggregate mixture or by removal and replacement with new mixture. The surface elevation of the completed subbase shall not exceed the surface elevation shown on the plans or established by the Engineer by more than 3/16 in.
- 11/ Thickness may be determined at the edge of pavement, back of curb, slipform template, or any other location at which the thickness of the item can be verified.
- 12/ Thickness determinations shall be documented by before and after cross sections or before and after measurements from an established reference elevation such as a stringline, form line or edge of pavement or by measuring the depth in a hole dug in the completed work.
- 13/ Thickness shall be verified at the start of the operation through continuous monitoring and communication with the Contractor. Once the specified processing thickness is obtained, it shall be frequently checked. Physical confirmation/observation of thickness and the presence of lime is required at the frequency shown in the table (e.g., test pits, Shelby tubes, etc.).

DOCUMENTATION OF PAY QUANTITIES BASED ON WEIGHT TICKETS

Pay quantities established based on truck weight tickets are not directly measured by Division representatives. For this reason, the following steps are taken to ensure that the quantities shown on the weight ticket are accurate:

- 1. The total weight of a truck cannot be obtained by adding separate axle weighings (see Obtaining Tare and Gross Weights of Trucks below).
- 2. The scale must be checked by the Department of Agriculture (DOA). Permanent scales are to be checked every 12 months and temporary scales are to be checked at each setup. A check by a DOA-approved commercial scale company will be acceptable if the DOA is unable to provide a current inspection. The date on the decal, identification number on the decal and location of the scale shall be recorded in the Quantity Book (example, page F-5). No payment is to be made for items measured on an unapproved scale.
- 3. A representative is to be at the scale to witness the weighings and initial the tickets. This requirement may be waived under certain conditions (see Daily Tare Weights, Automatic Ticket Printers, Weekly Independent Weight Checks, and Small Quantities).
- 4. Every effort should be made to personally collect and initial all delivery tickets for tonnage pay items, however, the inspector is only to initial those tickets that he/she personally collects. A memorandum shall be written to the contract file explaining why the inspector was not present in witnessing the delivery of the material. A daily yield check shall be conducted to justify the total amount placed.

For certain materials, a correction factor is to be applied to the pay quantity shown on the tickets (see Aggregate Moisture Correction and Agricultural Ground Limestone Correction).

For Bituminous Prime/Tack Coat (paid as Gallons calculated from weight tickets), use the calculation on page B-1. Supplier ticket densities (lbs/gal) are often calculated with a weight of water different than what is acceptable to the Division.

Obtaining Tare and Gross Weights of Trucks

All materials, which are paid for on the basis of truck weights, shall be weighed in accordance with the following procedure. Reference for this procedure is the Illinois Weights and Measures Act, which refers to the National Bureau of Standards Handbook 44.

"A vehicle or a coupled vehicle combination shall be commercially weighed on a vehicle scale only as a single draft. That is, the total weight of such a vehicle or combination shall not be determined by adding together the results obtained by separately and not simultaneously weighing each end of such vehicle or individual elements of such coupled combination. However:

- 1. the weight of a coupled combination may be determined by uncoupling the various elements (tractor, semitrailer, trailer), weighing each unit separately as a single draft, and adding together the results, or
- the weight of a vehicle or coupled-vehicle combination may be determined by adding together the weights obtained while all individual elements are resting simultaneously on more than one scale platform."

Daily Tare Weights Example, page F-39

To determine the pay weight of material delivered by truck, both gross and tare weights must be measured. Ordinarily, both measurements are to be witnessed by a representative of the Division. Frequently, however, the contractor's or supplier's loading operations make weighing each truck twice burdensome. For this reason, the Division permits the tare weights of each truck to be measured a minimum of once each day, and the measured tare weight of each is then to be used for the remainder of the day.

When daily tare weights are used, the inspector is to witness and record the tare weights for each truck used in that day's supply operation. The inspector's record must identify each truck, the tare weight of the truck, and whether the driver was in the truck during the measurement. Form AER 1465, Truck Tare Weights, is available for this use. (See Small Quantities and Automatic Ticket Printers)

Weight Checks

A weight check is a comparison of the net weight of material shown on the delivery ticket to the net weight measured on another scale. The purpose of a weight check is to give some assurance that the amount of material paid for, as shown on the delivery tickets, is the amount of material delivered to the job site.

For HMA tonnage items, contractors determine the shipping weight either by direct weighing or by using the nominal batch weights. The Specifications require that scales used to measure HMA be equipped with automatic printers. For batch plants the Specifications also allow the use of the batch weights, instead of direct scale measurement, when surge or storage bins are not used. There are three types of weight checks described in the following sections, one for weekly Independent Weight Checks, and two types (which should be alternated) for ticket weights determined from batch weights. All three types require re-weighing the net weight of the material on the selected truck. The difference between them is the source of the weight for comparison with the independent scales.

QC Checks by Contractor

On contracts having HMA pay items, the contractor is also required to perform scale checks and independent weight checks as part of the QC process. Scale checks performed by the contractor are for the purpose of ensuring the accuracy of the scale equipment. The procedures used by the contractor are the same as used by state representatives for performing the three types of weight checks described in the section above, except the contractor may use the approved platform scales at the plant site or a commercial scale approved by the Engineer. The plant scale must not be the scale used for the original measurement, but may be owned or controlled by the contractor or material supplier. QC checks performed by the contractor do not satisfy the requirement for independent weight checks to be performed by consultant personnel.

Automatic Ticket Printers

An automatic ticket printer is defined as follows:

The automatic printer shall be an integral part of the scale equipment or the scale and printer shall be directly connected in a manner that will prohibit the manual entry of weights except as provided in 1. below.

- 1. If the platform scale equipment measures gross weight, the printer will record the gross weight as a minimum. Tare and net weights shall be shown on weight tickets and may be printed automatically or entered manually.
- 2. If scale equipment on a platform scale zeroes out the truck tare automatically, the printer shall record the net weight as a minimum.
- 3. If the scale equipment on a surge bin weigh hopper zeroes automatically after discharging each batch, the printer shall record the net weight as a minimum.
- 4. If the scale equipment on surge bins automatically shuts down the feed system and weighs the amount in the silo before and after discharge, the printer shall record the net weight as a minimum.

For any weights recorded by an automatic ticket printer, no inspector will be required to witness the weighing and initial the ticket at the scale location. If tare weights or net weights are not automatically measured, then an inspector must still witness and record the tare weights (see Daily Tare Weights).

Weekly Independent Weight Checks (AER 2367) Example, page F-40

A weekly random check, regardless of project duration, must be performed by a consultant representative to verify the actual weight of material delivered. Independent weight checks are to be performed as follows:

- The check weights will be measured on an independent, approved platform scale other than the scale on which the original measurement is performed and not owned or controlled by the contractor or material supplier. The independent scale must be approved, and the DOA decal information is to be recorded in the Quantity Book.
- 2. Trucks are to be selected after leaving the plant, preferably at the paving location. Inspections should be unannounced and randomly scheduled. Under no circumstances should the inspector report to the plant and request a truck be loaded for an independent weight check.
- 3. Gross and tare weights must be measured and recorded, so that the actual net weight of material can be determined. The Consultant shall ensure the independent scale has been zeroed prior to determining both the gross and tare weights.
- 4. The independently measured net weight must agree with the weight shown on the tickets within a tolerance of 0.50 percent (0.70 percent for aggregate):

- 5. The independent weight check results are to be recorded and placed in the job file available for inspection, with corrective action taken for deviations from tolerance noted. See Section 90-01 of the Specifications.
- 6. Independent weight checks must be performed at least once per week per scale (this includes any scale and batch weights) when any item is placed for which payment is based on weight tickets. If the same scale is used for several contracts during the week, a weight check performed for any one of the contracts will be sufficient for all of the contracts, as long as a copy of the check is included in the records for each of the projects. (See Small Quantities)
- 7. The contractor must respond to the Engineer, in writing, within 7 calendar days as to the cause and correction of the deficient scale.

Note:

- The DOA performs maintenance checks of scales that have current decals. If a scale
 is still legal, but needs adjustment, the DOA puts a blue tag on the scale. If the scale
 is too far out of adjustment, the scale is not usable. Do not use either of these scales
 as an Independent Check scale.
- 2. The Office of Quality Compliance and Review (OQCR) is conducting random weight checks utilizing portable scales. These weight checks do not satisfy the Weekly Independent Weight Check requirement outlined above. If the difference between the weights shown on the delivery ticket and the weights determined by the portable scales exceed the level of assurance established by the OQCR, the Resident will be notified by the OQCR to initiate an additional random independent weight check. The notification will specify the period of time and/or other criteria which should be followed by the Resident.

Documentation for Payment of Hot-Mix Asphalt Based on Batch Weights

The Specifications provide for measurement of the mixtures by either weighing the mixtures on approved platform scales or on the basis of plant batch weights. When measured on the basis of plant batch weights, occasional checks shall be made by weighing full truckloads of the mixture on the approved platform scale at the plant site, or on a commercial scale approved by the Engineer. This check serves two purposes:

- 1. To check the accuracy of the scales, either batch, surge bin or the platform scales; or
- 2. The accuracy of batching the mixture.

The frequency of check weighing shall be a minimum of one per week; however, when the plant is in continuous daily operation, the frequency preferably should be one per day.

The accuracy of the scales should be checked by observing the actual scale weight of the batches produced and comparing the total with the net weight of a truck load from the platform scale. Variation between these weights of more than 0.5 percent would indicate the batch scales or the platform scales should be checked by DOA.

Scale Accuracy Check (0.5% Tolerance)

1.	Tare a truck on an approved platform scale	1500 LB
2.	As you observe the scale dial stopping on or near the present scale face marker, record the <u>actual</u> accumulative aggregate weight. Add in the mineral filler and paving asphalt weights.	3,979.0 3,981.0 4,129.0 3,979.0 4,108.0 <u>4,113.0</u> 24,289 LB
3.	Gross the truck on the platform scale.	39,401 LB

Tolerance
$$0.5\% = \frac{\text{net wt. } (3-1) - \text{summation of weighed batches}}{\text{net wt. } (3-1)} \times 100$$

$$= \frac{24,401 - 24,289}{24,401} \times 100$$

$$= 0.46\% \text{ O.K.}$$

The accuracy of batching the mixture should be randomly checked with the batch weights compared to the platform scales. The results, with an allowance for accuracy in weighing, should be checked within 0.5 percent of the gross load on the platform scale. If batch weights vary more than 0.5 percent, the batch scales should be recalibrated.

Batching Accuracy Check (0.5% Tolerance)

- 1. On an approved platform scale weigh a random truck <u>after</u> it 37,840.0 LB has been loaded.
- 2. Empty it on the job.
- Tare the returning truck on the platform scale.
 Actual net weight = 14,191.0 LB

 Record the load ticket. 23,999.0 LB

Tolerance 0.5% =
$$\frac{\text{load ticket (4) - actual net weight (1 - 3)}}{\text{actual net weight}} \times 100$$
$$= \frac{23,999 - 23,649}{23,649} \times 100 = 1.48\% \text{ recheck and/or recalibrate}$$

The Specifications also require the batch scales to be calibrated at the beginning of each construction season and at other times as deemed necessary by the Engineer. The accuracy certification will be by DOA.

The calibration and check weighing results are to be recorded and placed in the job file available for inspection with corrective action taken for deviations from tolerance noted.

Each of the above checks can be run on alternate occasions. Report these accuracy checks on Independent Truck Weight Check Form AER 2367. Results shall be placed in the job file.

Aggregate Moisture Correction

To correct the scale weight of 208/209 aggregate items, where a moisture deduction is applicable, the following formulas shall be used:

actual moisture =
$$\frac{\text{(wet weight of sample)} - \text{(dry weight of sample)}}{\text{(dry weight of sample)}}$$

$$\text{pay weight} = \frac{\text{(scale weight)} \ \text{X} \ \text{(1 + allowable moisture)}}{\text{(1 + actual moisture)}}$$

Samples shall be taken/tested on a daily basis (exception, see Small Quantities).

Note: Actual moisture content test results shall be rounded to the nearest 0.1%.

Agricultural Ground Limestone Correction

The pay weight for Agricultural Ground Limestone is to be adjusted using a source correction factor for the source of the agricultural limestone. This correction factor is located on the DOA's website at www.agr.state.il.us/news/pub/Limestonebooklet.html.

The adjusted pay weight is to be calculated as follows:

adjusted pay weight = (ticket weight) / (4 year source correction factor)

Small Quantities

Witnessing the weighing and initialing of weight tickets at the scale site for materials paid on the basis of weight tickets shall have a high priority. However, due to logistics between sources and jobsites, small quantities may be accepted providing the receiving inspector is satisfied that prior to accepting the material the weight appears satisfactory.

Limits on accepting the Contractor's or Supplier's weight tickets in accordance with this section are as follows:

- 1. Aggregates Not to exceed approximately 500 tons per day.
- 2. Hot-Mix Asphalt Should not exceed 250 tons per day.
- 3. Bituminous materials not to exceed approximately 4 tons or 1000 gallons per day.
- 4. Other materials consistent with this section.

Unlimited quantities for the following items:

- 1. Fertilizer Nutrients
- 2. Calcium Chloride
- 3. Hydrated lime for lime stabilized soil
- 4. Agricultural ground limestone

In the case the above conditions are met, the following applies:

- 1. No inspector will be required to be present at the scale to witness the weighing and initial the tickets.
- 2. No inspector will be required to witness and record tare weights for that day (if otherwise applicable).
- 3. No independent weight checks (if otherwise applicable) will be required as a result of that day's delivery of material.
- 4. No moisture determination will be required (if otherwise applicable) for that day.

Individual Load Ticket Waiver for Recycled Aggregates Paid on Square Yard or Cubic Yard Basis

When recycled PCC or bituminous concrete is allowed for use in lieu of virgin aggregate for a square yard or cubic yard pay item and the material is crushed/milled, graded and properly tested, the requirement for individual load tickets can be waived. Instead, the Contractor can provide a daily tabulation of each truck used to provide this material. This tabulation will contain,

at a minimum, the truck number, struck capacity (volume calculation), number of loads delivered for each vehicle and the total calculated volume for the day. Eighty percent of this calculated volume can then be used for yield check determinations.

Progress documentation quantities should also use 80% of the daily volume determined above for estimating cubic yard items. Station to station length times the average width calculation can be used for estimating square yard items. Depth check measurements and documentation are still required. Final documentation of the quantity will consist of field measurements and calculations or Agreement on Accuracy of Plan Quantities using Form AER 981. Verbal approval by the Construction and Materials Engineer, properly documented in the diary and quantity book, is evidence of material inspection for progress payments. Final Evidence of Material Inspection should be noted in the quantity book as "Material and gradation approved by Construction and Materials Engineer". Copies of gradation testing data must be in the Resident's final job records.

ROUNDING

Rounding with whole numbers: The rounding digit is defined as follows: When asked to round to the closest tens - the rounding digit is the second number to the left (ten's place). When asked to round to the nearest hundred - the third place from the left (hundreds place) is the rounding digit.

Rule 1. Determine what your rounding digit is and look to the right side of it. If the digit is 0, 1, 2, 3 or 4 do not change the rounding digit. All digits that are on the right hand side of the requested rounding digit will become 0.

Rule 2. Determine what your rounding digit is and look to the right of it. If the digit is 5, 6, 7, 8 or 9, your rounding digit rounds up by one number. All digits that are on the right hand side of the requested rounding digit will become 0.

Rounding with decimals: When rounding numbers involving decimals, the following apply:

Rule 1. Determine what the rounding digit is and look to the right side of it. If that digit is 4, 3, 2 or 1, simply drop all digits to the right of it.

Rule 2. Determine what the rounding digit is and look to the right side of it. If that digit is 5, 6, 7, 8 or 9, add one to the rounding digit and drop all digits to the right of it.

FINAL DOCUMENTATION

The final quantity for all items appearing in the Quantity Book must be cross-referenced to one of the following which will serve as documentation and which will show measurements and calculations used in determining the final quantity.

Note: Calendar Month, Each, Pair, and Lump Sum items entered directly into the Quantity Book will not require a cross reference but these items will require a cross- reference if documented on a source document other than the Quantity Book.

- 1. Field measurement books. (hardback only)
- 2. Inspector's Daily Report if identified as a "final field measurement."

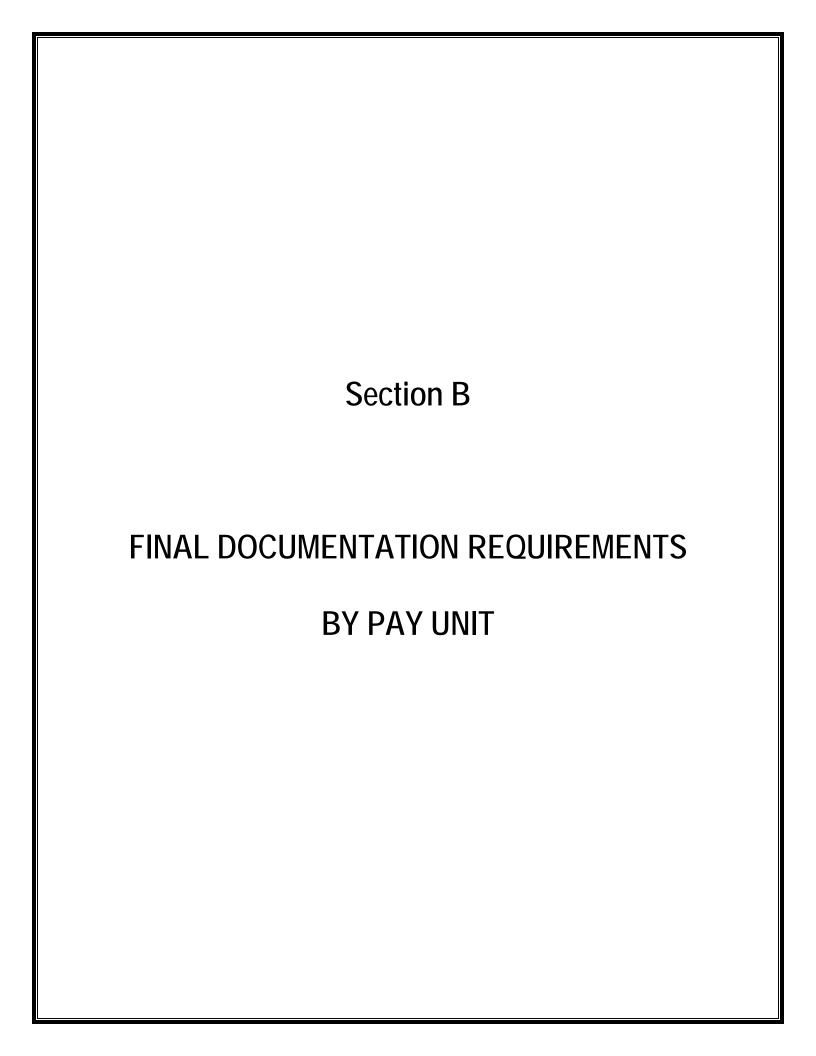
- 3. Cross-section paper for cross-sections only.
- 4. Weight tickets bound and summarized by means of an adding machine tape. Example, page F-41.
- 5. Project diary for calendar month or calendar day items.
- 6. Calculation files for such items as concrete structures and reinforcement bars.
- 7. Agreement on Accuracy of Plan Quantity, AER 981.
- 8. Force account file with Extra Work Daily Report, AER 635, and contractor's invoice.
- 9. Built According to Standard #_____
- 10. Computer printout.

The cross-referenced note(s) for final measurements and calculations shall be placed at the bottom of the Quantity Book page, and should be made only to the document(s) containing the information used in obtaining the final quantity. On items requiring depth checks, the final source of documentation in the quantity book shall include a reference to the depth check documentation location.

All calculations made to determine final pay quantities must be checked by someone other than the preparer.

All documents in the project files must be identified with the project designation (contract number or job stamp), except that documents identified above (Quantity Book, project diary and field books) and any document circulated outside the field office must contain the complete project designation (job stamp).

In addition, if an individual document includes more than one (loose-leaf) page, then each page should indicate that it belongs to the same document. This could be indicated, for example, by noting such information as the date, IDR number or "page __ of __."

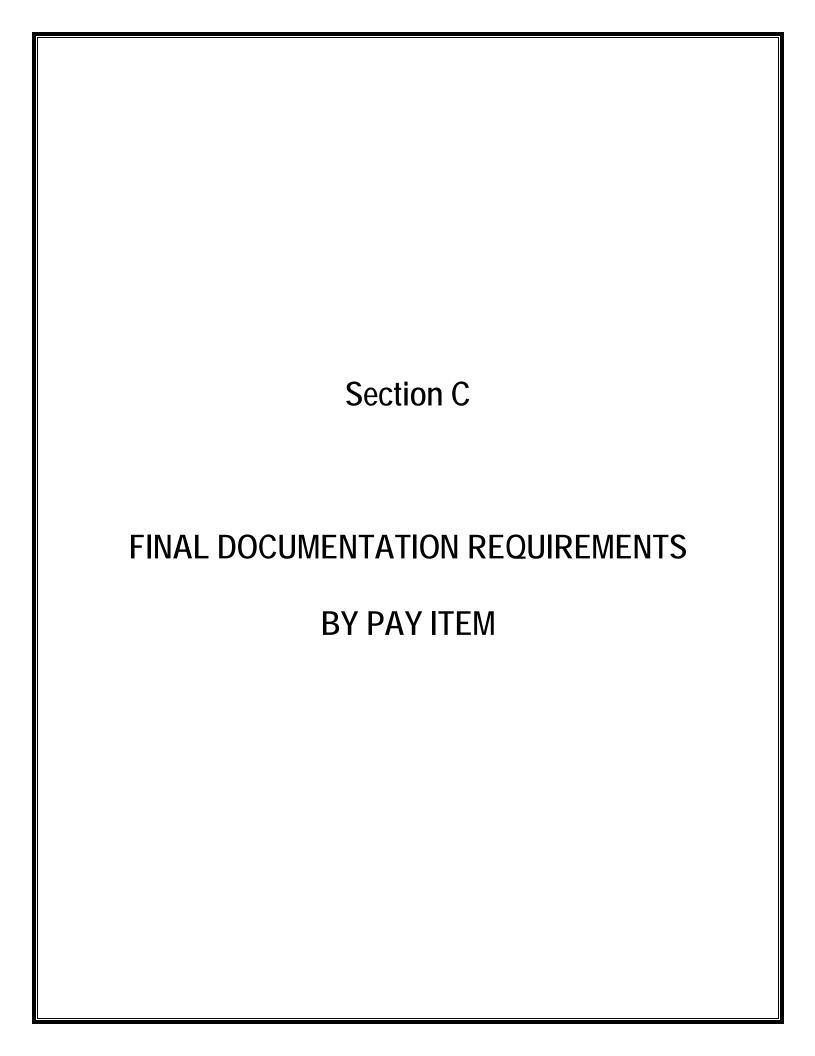

DOCUMENTATION REVIEW BY THE DIVISION

The Division of Aeronautics is responsible for conducting both progress and final documentation reviews of airport contracts. The final documentation review will take place after the completion of a project. The Engineer of Construction and Materials or an appointed representative will examine <u>randomly</u> selected airport construction contracts for both progress and final documentation in accordance with the Standard Specifications for Construction of Airports, this manual, and all other pertinent contract documents.

A detailed audit record will be reported on Form AER 1013 for progress documentation reviews and on Form AER 1014 for final documentation reviews.

Residents are to address all noted major deficiencies within 14 days on a progress review and within 30 days on a final review. The Resident shall notify the Engineer of Construction and Materials by letter indicating when all deficiencies have been corrected, describing specifically how each deficiency was corrected.

In addition, project audits for both Progress and Final Documentation may be conducted by additional State and/or Federal Agencies.



The following is a general breakdown of most pay units showing the degree of accuracy for measuring each and information required for documenting each. It is acceptable to leave final quantities to the same accuracy as the daily quantities.

PAY UNIT		ACCURACY OF MEASUREMENT		REQUIRED DOCUMENTATION
Acre Seeding & Mulching	1.	Summation of final quantity to the nearest 0.01 acre.	1.	Field measurements used to calculate the final quantity Area (acre) = $\frac{L (ft) \times W (ft)}{43,560}$
page F-7			2.	43,560 Form AER 981 (where applicable)
Calendar Month	1. 2.	Monthly or fraction thereof. Summation of final quantity to the	1.	Project Diary entry or Quantity Book entry on the date the office or lab is ready for use, and
		nearest 0.5 month.	2.	Monthly entries in the Quantity Book, and
			3.	Quantity Book or Project Diary entry on the date the Contractor was notified the office or lab would no longer be needed.
Cubic Yard Trench Backfill page F-8	1.	Final quantity of concrete rounded to Nearest 0.1 cubic yard. *	1.	Field measurements used to calculate the final quantity or the statement "built to plan dimensions" when they are used to
Unclassified Ex page F-9	2.	All other items measured to the nearest 0.1 cubic yard daily and the final quantity summarized to the nearest cubic yard *.		calculate the final quantity, along with calculations. OR "Built according to Standard" statement.
	*	Note: Individual dimensions shall be Measured to the nearest 0.01 ft.		OR Form AER 981 (where applicable) with calculations for daily estimates.
			2.	Depth checks (where applicable).
Each, Pair or Lump Sum Eng. Field Office page F-10	1.	Each, Pair	1.	Recorded by Station or location and date in the Quantity Book.
Gallon Prime Coat page F-11	1.	Summation of final quantity to nearest gallon .	1.	Calculations based upon initialed weight tickets and Specific Gravity corrected to 60 F, which is given on the shipping or storage ticket.
				Vol (gallon) = $\frac{\text{net wt. (lbs)}}{8.328 \times \text{Sp. Gr.}}$ or
			2.	Volumetric meter ticket, if the ticket contains proper information in accordance with the Specifications.
			3.	Record of the DOA decal date, I.D. number, and scale location.

PAY UNIT		ACCURACY OF MEASUREMENT		REQUIRED DOCUMENTATION
Linear Foot	1.	Each run measured to the nearest 0.1 ft.	1.	Field measurements.
RCP page F-8	2.	Summation of final quantity to nearest foot.	2.	Depth checks (where applicable).
Pound	1.	Summation of final quantity to nearest pound .	1.	Calculations based on Bill-of- Materials. OR
				Weight tickets or bag counts, accompanied by conversion calculations (Fertilizer Nutrients). OR
				Form AER 981 (where applicable)
Square Foot or Square Yard PCC Sidewalk	1.	Individual areas measured to the nearest 0.1 sq. ft. or 0.1 sq. yd. *	1.	Field measurements used to calculate the final quantity or the statement, "built to plan
page F-12	2.	Summation of final quantity to nearest ton except where otherwise shown.		dimensions" when they are used to calculate the final quantity, along with calculations.
Pavement Milling page F-13				OR Form AER 981 (where applicable)
	*	Note: <u>Individual</u> dimensions shall be measured to the nearest <u>0.01 ft.</u>	2.	Depth checks (if applicable).
			3.	Yield checks (if applicable).
Ton <i>Turfing Lime</i>	1.	Nearest 0.1 tons daily .	1.	Weight tickets showing the material, date and weight, and
page F-14	2.	Summation of final quantity to nearest ton except where otherwise shown.	2.	Daily tare weights on each truck recorded and retained (see "Small Quantities"), and
			3.	Daily adding machine tape showing: job designation, pay item, date, location, net weight and pay weight corrected for moisture and/or 4-year lime conversion factor, if required, with "Calc By:" and "Checked By:" initials and dates, and
			4.	Record of the Department of Agriculture decal date and identification number in the Quantity Book or a record of a DOA-approved commercial scale company, and
			5.	Scale check for HMA batch plants or when automatic printer tickets are used in lieu of scale inspector, and
			6.	Tickets shall have the jobsite and scale inspector's initials on them. Scale inspector's initials are not needed for small quantities (see "Small Quantities").

Unit Diameter	Summation of final quantity to nearest unit diameter .	1.	If a tree tape was used, make a
			note of this with your field measurements. If a tree tape was not used, the actual field measurements must be shown along with calculations for the appropriate Unit Diameter.
			Unit Dia. = circumference (in.) (English) Π (Note: Π = 3.1416)
		2	Calculations

EVIDENCE OF MATERIAL INSPECTION

Much of the material delivered to a typical construction project has been pre-inspected or may have been produced under a Department-approved Quality Control program. Evidence of Materials Inspection is the minimum proof that Method of Acceptance sampling and testing has been performed. Note that in addition to this, all manufactured items must have verification of compliance with the Buy American Act. Evidence of Materials Inspection categories are listed below.

- 1. CERT (CERT) Manufacturer's written certification that indicates material complies with the specifications or contract.
- 2. ILL OK (IL OK, ILOK) Material is stamped by an IDOT Inspector with an "IL OK" stamp indicating prior inspection and acceptance. An inspection tag may be used as Evidence of Materials Inspection and approval.
- LA 15 (LA15) This Department form is a supplier's certification indicating material is from approved stock. The form is sometimes used as a Bill of Lading to indicate prior approval. The form should include supplier, proper contract/job designation, material description, manufacturer, specific approved material (test ID number, lots, or batches), and quantity.
- 4. LIST (LIST) The material appears on a current list of Department-approved products or approved sources found at the Department's web site, www.dot.il.gov, under "Doing Business/Materials". Contact the inspecting Highway District's Materials Office for information on aggregates.
- 5. TEST (TEST) Approved test result available via the MISTIC system or from locally performed lab or field tests (e.g., soil density).
- 6. TICKET (TICK) A ticket from an approved source indicating Department material or aggregate gradation, job designation, purchaser, and weight (if applicable).
- 7. VISUAL (VIS) A Resident memo denoting visual inspection is required in the project file, and input into MISTIC is required.
- 8. N/A or "None" when no materials are involved. (i.e. Engineers Field Office, and removal items)

NOTE: The following elements are required for evidence of material inspection for both Portland Cement Concrete and HMA mixtures:

- 1. Plant Approval,
- 2. Approved Mix Design, and
- 3. Plant Production Adequately Monitored.

The Resident shall have the Plant approval letter, Job Mix Formula (JMF) and JMF Mix Design approval letter, and applicable reports consistent with the Manual for the Documentation of Airport Materials on file in order to substantiate the evidence of material inspection requirements.

SECTION	ITEM	PAY UNIT	REQUIRED DOCUMENTATION	*EVIDENCE OF MATERIAL INSPECTION
101	Airport Rotating Beacons	Each	Station Locations	Approved Shop Drawings
103	Beacon Towers	Each	Station Locations	Approved Shop Drawings
106	Light Poles, Light Fixtures	Each	Station Locations	Approved Shop Drawings
107	Airport Wind Cones	Each	Station Locations	Approved Shop Drawings
108	Installation of Underground Cable for Airports	Foot	Field MeasurementsStation to Station groupings listing individual measurements.	Approved Shop Drawings
109	Airport Electrical Vault and Vault Equipment	Each L.S.	Station Locations	Approved Shop Drawings
110	Installation of Airport Underground Electrical Duct	Foot	Field MeasurementsStation Locations	Approved Shop Drawings
119	Airport Obstruction Light	Each	Station Locations	Approved Shop Drawings
125	Airport Lighting Systems, Signs	Each	Station Locations	Approved Shop Drawings
151	Tree Clearing	Each	 Field Measurements Station to Station groupings listing individual measurements. Tree tape or computations. If a tree tape is used it must be indicated. 	N/A or None
151	Clearing & Grubbing	Acre	 Form AER 981, or Measurements and calculations based on the horizontal area within the limits specified on the plans or by the Engineer. 	N/A or None
152	Unclassified Excavation	CY	 From AER 981, or Before and after cross-sections and calculations. 	N/A or None

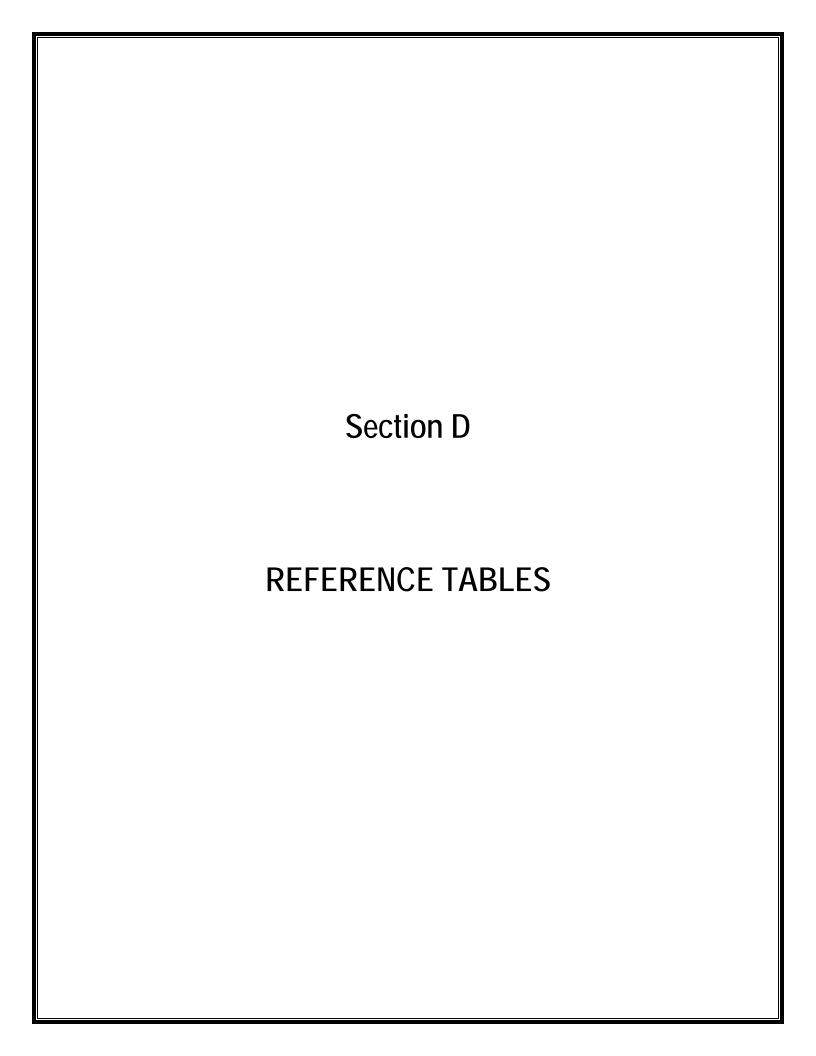
SECTION	ITEM	PAY UNIT	REQUIRED DOCUMENTATION	*EVIDENCE OF MATERIAL INSPECTION
152	Solid Rock Excavation	CY	 Before and after cross-sections and calculations, or When the unit prices of Rock Excavation and Earth Excavation are identical, authorized approval can be obtained for a Plan Quantity Agreement for both, Form AER 981. 	N/A or None
152	Common Excavation	CY	 From AER 981, or Before and after cross-sections and calculations. 	N/A or None
152	Borrow Excavation	CY	Before and after cross-sections and calculations.	Soil from off Airport: Letter of approval from Construction & Materials Engineer; Gradation Analysis
152	Geotechnical Fabric for Ground Stabilization	SY	In-place measurements and calculations.	CERT
152	Exploration Trench	Foot	In-place measurements of the open trench.Depth checks.	N/A or None
155	Lime	Ton	 Weight tickets initialed at jobsite. Daily tabulated weight totals on calculator tape. Platform scale tickets used in weight checks. 	Approved source and TICK
155	Soil Processing	SY	 Form AER 981, or In-place measurements and calculations. Width not to exceed plan dimensions. Depth checks. 	Soil density reports, TEST

SECTION	ITEM	PAY UNIT	REQUIRED DOCUMENTATION	*EVIDENCE OF MATERIAL INSPECTION
156	Erosion Control	LS, Foot, Each, SY	In-place measurements and, if appropriate, calculations.	Approved source or CERT
161 / 162	Temporary Fencing	Foot	In-place field measurements.	N/A or None
161	Woven Wire Fence	LF	In-place measurements along fence from outside to outside of end posts, excluding the length occupied by gates.	ILL Tag or LA15 100% domestic steel origin
161 / 162	Gates	Each	Field measured and counted for	ILL Tag or LA15
			each size and type.	100% domestic steel origin
162	Chain Link Fence	LF	In-place measurements along fence	ILL Tag or LA15
	outside to outside of end posts, excluding the length occupied by gates.	100% domestic steel origin		
208	Porous Granular Embankment	Ton	Weight tickets with moisture	Approved source & TICK
			correction. 108% maximum pay.	Density Reports
208	Porous Granular Embankment	CY	Before and after cross-sections and	Approved source & TICK
			calculations	Density Reports
208 / 209	Aggregate Base Course	Ton	Weight tickets with moisture	Approved source & TICK
			correction, if required.108% maximum pay.Surface variation tests.	Density Reports
208 / 209	Aggregate Base Course	SY	Form AER 981	Approved source & TICK
			 In-place surface measurements and calculations. Width not to exceed plan dimensions. Depth checks. Surface variation tests. 	Density Reports

SECTION	ITEM	PAY UNIT	REQUIRED DOCUMENTATION	*EVIDENCE OF MATERIAL INSPECTION
209	Aggregate Shoulders	SY	 In-place surface measurements and calculations. Width not to exceed plan dimensions. 	Approved source & TICK Density Reports
217	Aggregate-Turf Pavement	SY	 Depth checks. Form AER 981. or In-place surface measurements and calculations. Width not to exceed plan dimensions. Depth checks. 	Approved source & TICK Density Reports
401	Bituminous Pavement Grooving	SY, SF	 Form AER 981, or In-place surface measurements and calculations. 	N/A or None
401 / 402 / 403	Mix for Cracks & Joints & Bituminous Base Course & Bituminous Concrete Surface Course & Porous Friction Course	Ton	 For all Plants: Weight tickets initialed at jobsite. Daily tabulated weight totals on calculator tape. Platform scale tickets used in weight checks. Dept. of Agriculture decal information, for platform, surge bin and surge bin hopper scales used. 103% maximum pay. Paving Summary (Form AER 2529) Surface variation tests. 	Plant report and Tickets (QC/QA), or Approved plant, Approved mix design and Plant adequately monitored Acceptance testing via cores or nuclear density Check sample test(s)

SECTION	ITEM	PAY UNIT	REQUIRED DOCUMENTATION	*EVIDENCE OF MATERIAL INSPECTION
403	Stabilized Subbase	Ton	 For all Plants: Weight tickets initialed at jobsite. Daily tabulated weight totals on calculator tape. Platform scale tickets used in weight checks. Dept. of Agriculture decal information, for platform, surge bin and surge bin hopper scales used. 103% maximum pay. 	Plant report and Tickets (QC/QA), or Approved plant, Approved mix design and Plant adequately monitored Acceptance testing via nuclear density testing
501	PCC Pavement	SY	In-place surface measurements and calculations. Width not to exceed plan dimensions. Depth checks. Paving Summary (Form AER 2531)	Plant report and Tickets (QC/QA), or Approved plant, Approved mix design and Plant adequately monitored. Acceptance testing CERT for: Rebar, Dowels, Expansion Joint, Chemical Adhesive
501	PCC Pavement Grooving	SY, SF	 Form AER 981, or In-place surface measurements and calculations. 	N/A or None
501	Concrete Removal	CY	Field measurements and calculations	N/A or None

SECTION	ITEM	PAY UNIT	REQUIRED DOCUMENTATION	*EVIDENCE OF MATERIAL INSPECTION
602 / 603 / 800	Bituminous Materials Prime Coat Bituminous Tack Coat Emulsified Asphalt	Gal	 Weight tickets and calculations, or DOA-approved meter tickets corrected for temp. Not truck distributor meter. 105% maximum pay. 	Bill of lading from certified source, or LIST and Bill of lading
609	Bituminous Material Applied	Gal	 Weight tickets and calculations, or DOA-approved meter tickets corrected for temp. Not truck distributor meter. 105% maximum pay. 	Bill of lading from certified source, or LIST and Bill of lading
609 / 625	Cover Coat Aggregate & Seal Coat Aggregate	Ton	Weight tickets with moisture correction.110% maximum pay.	Approved source and TICK, or LIST & TICK
609	Aggregate & Seal Coat Aggregate	Ton	 Weight tickets with moisture correction. 108% maximum pay for Aggregate. 110% maximum pay for Seal Coat Aggregate. 	Approved source and TICK, or
610	Concrete Structures	CY	 Form AER 981, or Calculations in permanent file verifying plan, or revised, quantity, and A statement indicating the structure was built in accordance with plan dimensions or a sketch showing measured dimensions. 	Plant report and Tickets (QC/QA), or Approved plant, Approved mix design and plant adequately monitored Acceptance testing


SECTION	ITEM	PAY UNIT	• -	/IDENCE OF IAL INSPECTION
610	Reinforcement Bars	LB	· · · · · · · · · · · · · · · · · · ·	ducer and Mill analysis
			 Calculations in permanent file verifying plan, or revised, quantity. Use the table given in Article 508.07 of the Standard Specifications for Road and Bridge Construction. 	tic steel origin
620	Pavement Marking	SF	 Calculations of SF based on Contract Specifications. material was approved lots batches must 	pplier notification that taken from tested and sor batches. Lots or to be identified and allons of each color ied.
625	Tar Emulsion Seal Coat	SY	In-place measurements and or	from certified source,
			calculations. (LIST or TES	T) and Bill of lading
701	Trench Backfill	CY		urce and TICK, or
			 Trench measurements and calculations. As per Item 107- 	K
			3.5 of the Standard Density Testi Specifications for Construction of Airports.	ng
701	Precast Concrete Box Culvert	LF	In-place measurements. LIST and App	proved shop drawings
701	Storm Sewer	LF	In-place measurements. See Item 701-4.1 regarding the method of measuring at drainage structures Concrete: LI Plastic: IL O Clay: LA15 of Cl	

SECTION	ITEM	PAY UNIT	REQUIRED DOCUMENTATION	*EVIDENCE OF MATERIAL INSPECTION
702	Slotted Drains	LF	In-place measurements. See Item 701-4.1 regarding the method of measuring at drainage structures	Plastic: IL OK or Tag Metal: IL OK or LA15
705	Porous Granular Backfill	CY	• Form AER 981, or	Approved source and TICK, or
			 Trench measurements and calculations. As per Item 701- 	LIST and TICK
			3.5. Dimensions used in calculations shall not exceed maximum allowable. See Article 550.04 of the Standard Specifications for Road and Bridge Construction	Density Testing
			 for maximum trench width. Trench measurements and calculations using the Standard Tables Section E (for concrete pipe only). 	
705	Pipe Underdrain	LF	Calculations based on LF per size and type of pipe.	Plastic: IL OK or Tag
751	Manholes & Catch Basins & Inlets	Each	Field measured and counted for each size and type.	Concrete: Plant report and tickets (QC/QA), or Approved Plant, Approved Mix design and plant adequately monitored.
				Pre-Cast: Approved source and shop drawings.
				Brick & Mortar: See Item 751-2.2
				Metal: Stamped Certified or IL OK

SECTION	ITEM	PAY UNIT	REQUIRED DOCUMENTATION	*EVIDENCE OF MATERIAL INSPECTION
752	Concrete Headwall	Each	 Statement, "Built according to Standard," or If a standard headwall is not used, computations verifying the plan quantity are required. Field measured and counted for each size. 	Plant report and Tickets (QC/QA), or Approved plant, Approved mix design and Plant adequately monitored Pre-Case: Approved source and shop drawings
752	Grating	Each	Field measured and counted for each size.	Casings: IL OK or Tag or LA15 and CERT Welded Steel: IL OK or Tag or LA15
754	Concrete Curb	LF	 In-place field measurements along the fence. Depth checks. 	Plant report and Tickets (QC/QA), or Approved plant, Approved mix design and Plant adequately monitored Acceptance testing
754	Concrete Gutter & Comb. Concrete Curb & Gutter & Pave Ditch & Flumes	LF	 In-place field measurements in the flow line. Depth checks. 	Plant report and Tickets (QC/QA), or Approved plant, Approved mix design and Plant adequately monitored Acceptance testing
901	Lime & Fertilizer	Acre	See requirements for these pay items listed in Item 901.	Approved source and guaranteed analysis.

SECTION	ITEM	PAY UNIT		REQUIRED DOCUMENTATION	*EVIDENCE OF MATERIAL INSPECTION
901	Seeding	Acre	 Slo sur 	rm AER 981, or ope measurements of the rface area seeded and lculations.	CERT and results of seed analysis signed by Registered Seed Technologist
904	Sodding	SY	• In- _I	rm AER 981, or place surface measurements d calculations.	Approved source and TICK
905	Topsoiling	CY	• Su aut	rm AER 981, or Irface measurements of all thorized areas and Iculations.	None, if on site, otherwise sample indicating pH, organic content, and gradation.
905	Topsoiling	SY	 Su aut cal 	rm AER 981, or orface measurements of all othorized areas and declations. opth checks.	None, if on site, otherwise sample indicating pH, organic content, and gradation.
908	Mulching	Acre	• In-	rm AER 981, or place surface measurements d calculations.	VIS CERT, if manufactured

^{*} Material certification / inspection shall be completed *prior* to incorporation of material into the project. This list was created to compliment the required material certification / inspections / testing in the "Manual for Documentation of Airport Materials". The "Manual for Documentation of Airport Materials" shall be referenced for *all* materials certification / inspection / testing issues.

ESTIMATING DAILY EARTH VOLUMES WITH LOAD COUNTS

Page A-6 of this Manual presents a concept called "Progress Documentation." Simply stated, it is necessary to provide documented entries in the Quantity Book as work progresses, even though final measurements will usually be provided after the pay item is completed. Therefore, with many pay items, the progress documentation may be based upon nothing more than a recorded estimate of work done.

This paper deals with a method of estimating Excavation pay items.

On the following pages (D-2 through D-7) is a table of hauling volumes of most of all the motor scrapers and hauling units presently being used in the State. If a piece of equipment not in Section D is being used and the Contractor is estimating earth volumes by load count, have the Contractor provide a specification sheet for the piece(s) of equipment. The specification sheet will provide struck capacities. Information can also be obtained from the Equipment Watch SpecFinder website. The following example indicates the procedure, which may be used in estimating earth volumes utilizing the enclosed table.

- 1. Obtain the daily load count from the Contractor. Spot-check occasionally.
- 2. From the following table, select the struck capacity for the model being used.
- 3. Multiply the product of the load count and struck capacity by 80%. (This factor may vary somewhat with various materials and loading procedures.)

Example: 70 loads hauled by a CAT 621 The day's volume = 70 loads x 14 cy x 80% = 784 cy

4. It is suggested that the above information and calculations be recorded on the Inspector's Daily Report (Form AER 628. Example, page F-9).

Model	# Axles	Engine Make	Engine Model	Drive H.P.	Shift Type	Туре	Weight	Туре	Standard Hauling Unit Cubic Yards Struck	Heaped	Year From	rs Built To
Allis-Chalmers	s Manufact	turing C	ompany	rated								
TS-160	2	AC	TDS516	155	DD	MS	28,500	Scraper	7	9.5		1961
TS-160	2	AC	TDS516	155	DD	MS	28,500	R. Dump Scraper R. Dump	7.7 8.5 7.7	12 11 12		1962
TS-160	2	AC	11000	175	DD	MS	28,800	Scraper R. Dump	8.5 7.7	11 12		1963
TS-200	2	AC	TD779	176	DD	MS	38,560	Scraper	10	13		1956
TS-260	2	AC	TD844	200	DD	MS	39,600	Scraper R. Dump	11 11	14 15		19589
TS-260	2	AC	16000	230	DD	MS	44,800	Scraper R. Dump	12.5 11	17 15		1962
TS-260	2	AC	15000	300	TQ	PS	45,300	Scraper R. Dump	14 11	19 15		1963
260 DD	2	AC AC	19000 19000	296 296	DD DD	MS MS	46,800 48,600	Scraper R. Dump	15 22	20 26		1967 1968
260	2	AC	19000	296	TQ	PS	48500	Scraper	15	20		1968
0004	0	AC	19000	296	TQ	PS	50,360	R. Dump	22	26		1968
260A	2	AC	21000	300*	TQ	PS	51,200	Scraper R. Dump	15 22	20 26		Current Current
								B. Dump	18	22		Current
260EA 260E	2 2	AC AC	21000 19000	300* 294	TQ TQ	PS PS	59,300 58,000	E. Scraper Elevating		23 23		Current 1968
TS-300	2	Buda	6DAS-844	280	DD	MS		Scraper Scraper	14	18		1955
TS-360	2	AC	TDS844	280	DD	MS	49,000	Scraper	15	20		1962
TS-360(H) 460 B	2 2	AC AC	21000 25000	340 353	DD TQ	MS PS	64,000 78,500	Scraper Scraper	22.3 24	30 33		1963 1968
460B	2	AC	25000	353	TQ	PS	72,900	R. Dump	30	35		1968
460C	2	GMC	12V-71N	422*	TQ	PS	86,200	Scraper	24	33		Current
								R. Dump B Dump	30 27	35 32		Current Current
562 C	2	AC (2)	25000	706	TQ	PS	122,750	Scraper	33	44		1967
Caterpillar Tra	ctor Comp	cat Cat	D318	90	DD	MS	35,450	Scraper	7	9	1941	1946
DW 10	3	Cat	D318	100	DD	MS	23,040 35,240	Wagon Scraper	8.9 7	14 9	1946	1947
DVV 10	3	Out	2010	100	DD	IVIO	28,237	Wagon	8.9	14	1340	1547
DW 10	3	Cat	D318	115	DD	MS	33,365 28,237	Scraper Wagon	8.7 8.9	10 14	1947	1954
DW 15	3	Cat	D326	150	DD	MS	41,430	Scraper Wagon	10 11.5	12.5 17.5	1954	1955
DW15C	3	Cat	D326	164	DD	MS	42,370 31,965	Scraper Wagon	10 11.5	12.5 17.5	1955	1957
DW 15E	3	Cat	D326	166	DD	MS	42,940	Scraper	13	18	1957	1960
DW 15F	3	Cat	D326	166	DD	MS	42,940	Scraper Wagon	13 14.1	18 15.6	1960	1961
DW20	3	Cat	D337F	206	DD	MS	50,900 40,830	Scraper Wagon	14 18	22 23	1951	1955
DW20E	3	Cat	D337F	230	DD	MS	57,400	Scraper	18	25	1955	1958
DW20F	3	Cat	D337F	265	DD	MS	48,060 59,240	Wagon Scraper	20 18	30 25	1958	1959
DW20G	3	Cat	D337F	300	DD	MS	57,720	Wagon Scraper	20.5 19.5	22.5 27	1959	1960
							,	Scraper	24	34		
DW21	2	Cat	D337F	206	DD	MS	54,650	Wagon Scraper	20.5 15	22.5 20	1951	1955
DW21C	2	Cat	D337F	230	DD	MS	58,670	Scraper	18	25	1955	1958
DW21D DW21G	2 2	Cat Cat	D337F D337F	265 300	DD DD	MS MS	58,010 59,980	Scraper Scraper	18 19.5	25 27	1958 1959	1959 1960
613	2	Cat	3160	150	TQ	PS	27,200	Elevating Scraper	19.5	11	1969	Current
619	2	Cat	D326	200	DD	MS	47,150	Scraper	14	18	1959	1960
619C 621	2 2	Cat Cat	D340 D336	250 300	DD TQ	MS PS	47,500 52,000	Scraper Scraper	14 14	18 20	1960 1966	1966 Current
627	2	Cat	D333/D333	225/225	TQ	PS PS	63,500	Scraper	14	20	1968	Current
630A	3	Cat	D343	335	TD	PS	69,300	Scraper Scraper	21 24	28 29	1960	1961
630A-482	3	Cat	D343	335	TD	PS	79,000	Scraper Wagon	27 32	35 38	1960 1961	1961 1961
630B	3	Cat	D343A	400	TD	PS	78,800	Scraper	21	30	1961	1969
631A	2	Cat	D343A	335	TD	PS	66,700	Scraper	21	28	1960	1961
631B 631C	2 2	Cat Cat	D343 D343	360 400	TD TQ	PS PS	80,300 75,400	Scraper Scraper	21 21	30 30	1962 1970	Current Current
632	3	Cat	D343	360	TD	PS	86,910	Scraper	28	38	1961	1964
633	2	Cat	D343	360	TD	PS		Elevating Scraper		32	1970	Current
								Elevating				

Model	# Axles	Engine Make	Engine Model	Drive H.P.	Shift Type	Type	Weight	Type	Standard Hauling Unit Cubic Yards Struck	Heaped	Year From	rs Built To
633C	2	Cat	D343	415	TQ	PS	86,500	Scraper		32	1970	Current
637	2	Cat	D343/D333	415/225	TQ	PS	86,900	Scraper	21	30	1970	Current
641	2	Cat	D346	500	TD	PS	99,500	Scraper	28	38	1962	Current
641B	2	Cat	D346	550	TQ	PS	102,500	Scraper	28	38	1970	Current
650	3	Cat	D346	500	TD	PS	120,400	Scraper	32	44	1962	Current
650B	3	Cat	D346	550	TQ	PS	101,700	Scraper	32	44	1970	Current
651 654 B	2	Cat	D346	500	TD	PS	108,700	Scraper	32	44	1962	Current
651B 657	2 2	Cat Cat	D346 D346/343A	550 500/360	TQ TD	PS PS	115,700 128,900	Scraper Scraper	32 32	44 44	1970 1962	Current Current
657B	2	Cat	D346/D343	550/400	TQ	PS	131,800	Scraper	32	44	1902	Current
660	3	Cat	S346	500	TD	PS	117,200	Scraper	40	54	1962	1970
					TD	PS	123,500	Wagon	55	64	1965	1970
660B	3	Cat	D346	550	TQ	PS	110,300	Scraper	40	54	1970	Current
666	3	Cat	D346/D343A	500/400	TD	PS	136,600	Scraper	40	54	1962	Current
666B	3	Cat	D346/D343	550/400	TQ	PS	130,800	Scraper	40	54	1970	Current
J619	2	Cat	D340	250	TD	PS	60,390	Elevating		20	1964	1966
J621	2	Cat	D336	300	TQ	PS	65,000	Scraper Elevating Scraper		21.5	1966	Current
Clark Equipmen	t Compa							Ceraper				
110	2	Cum	C-175-C	162	TQ	PS	31,200	Scraper	8	10.5		1961
110	2	Cum	C-175-C	162	TQ	PS	34,850	Scraper	9.6	12.5	1960	1962
110	2	Cum	C-175-CI	162	TQ	PS	34,850	Scraper	10.4	13.5	1958	1965
110	2	GM	6V-53	170	TQ	PS	34,580 34,850	Wagon Scraper	8.3 10.4	10 13.5	1958 1962	1965 1965
110	2	GIVI	67-33	170	IQ	P3	34,850	Wagon	8.3	10.5	1962	1965
110-H	2	GM	4-71N	160	TQ	PS	33,300	Elevating	0.5	11	1969	Current
110H-T	2	GM	4-71N	320	TQ	PS	52,062	Scraper Elevating		16	1970	Current
110-12	2	GM	6V-53N	178	TQ	PS	37,850	Scraper Elevating		12	1965	1968
110-14	2	GM	6V-71N	288	TQ	PS	37,850	Scraper Elevating		14	1967	Current
210	2	Cum	NTO-6-C	262	TQ	PS	44,000	Scraper Scraper	12.7	18		
210	2	Cum	NTO-6-C	262	TQ	PS	45,900 45,900	Scraper	13.5	19		1961
210	2	Cum	NTO-6-C	262	TQ	PS	48,590	Scraper	14	19	1960	1962
210	2	Cum	NTO-6-CI	262	TQ	PS	49,600	Scraper	15	20	1957	Current
	_						51,925	Wagon	16	20	1959	Current
210-Self-Loading	2	GM	8V-71	290	TQ	PS	50,725	Scraper	15	20	1964	1967
210	2	GM	8V-71	290	TQ	PS	49,600	Scraper	15	20	1961	Current
210-H	2	Cum		335	TQ	PS	51,925	Wagon Elevating	16	23 23	1961 1967	Current Current
040	0	0	NET C DI	075	то.	DC	70.000	Scraper	00	07	4057	4050
310	2 2	Cum	NFT-6-BI 12V-71	375 420	TQ	PS PS	70,000	Scraper	20	27	1957	1959 1965
310 310(III)	2	GM GM	12V-71 12V-71N	420 475	TQ TQ	PS PS	76,300 81,800	Scraper Scraper	21.6 24.4	29 32	1959 1965	Current
310-H	2	GM	12V-71N 12V-71N	475	TQ	PS	92,000	Elevating	24.4	31	1967	Current
01011	-	O.W.	124 7 114	110	100		02,000	Scraper		01	1001	Curron
Curtiss Wright (Construc	tion Ma	chinery	<u>net</u>								
CW-27	2	GM	4055C	143	DD	MS	32,500	Scraper	7	10	1958	1961
CW-215	2	Cum	HRS-6	240	DD	MS	54,000	Scraper	15	21	1958	1961
CW-220	2	GM	6-110T	375*	TQ	PS	69,000	Scraper	20	27	1958	1961
CW-226 CW-320	2 1	GM	6-110T NRT-6	375 300	TQ DD	PS MS	85,500 64,500	Scraper	26 20	36 27	1958 1958	1961 1961
Deere & Compa		Cum	INICT-0		00	IVIO	04,300	Scraper	20	21	1930	1901
840 Elevating	11 y 3	Deere		<u>rated</u> 76	DD	MS	20,330	Scraper		7.5	1962	1965
5010 Elevating	3	Deere		76 127	DD	MS	20,330 28,850	Scraper		7.5 8	1962 1961	1965
JD760 Elevating	3	Deere		143	DD	MS	30,650	Scraper		9	1965	1969
JD760A	3	Deere		152	TQ	PS	32,250	Scraper		9.5	1969	Current
JD860	2	GM	6-71	215	TQ	PS	42,300	Scraper		15	1969	Current
Euclid, Inc.				rated								
76FDR-18SH	3	Cum	NH		TQ	PS		Scraper	12	16		1957
76FDR-89W	3	Cum	NH		TQ	PS		B. Dump	13	19		1957
77FDR-18SH	3	GM	6-71		TQ	PS		Scraper	12	16		1957
77FDT-89W	3	GM	6-71		TQ	PS		B. Dump	13	19		1961
22TDT-21SH	3	GM	6-110		TQ	PS		Scraper	15.5	21		1956
22TDT-122W	3	GM	6-110		TQ	PS		B. Dump	17	25.5		1956
23TDT 422W/	3	GM	6-110		TQ	PS		Scraper	15.5	21		1956
23TDT-122W 28TDT-22SH	3 3	GM Cum	6-110 NRT		TQ TQ	PS PS		B. Dump Scraper	17 15.5	25.5 21		1961 1956
28TDT-225H 28TDT	3	Cum	NRT		TQ	PS PS		Scraper B. Dump	15.5	25.5		1956
14TDT-21SH	3	Cum	14141		TQ	PS		Scraper	15.5	23.3		1955
15TDT-22SH	3	Tw Cum	NH		TQ	PS		Scraper	18	24		1955
16TDT-23SH	3	Tw GM	6-71		TQ	PS		Scraper	18	24		1956
37LDT-137W	3	GM	6-110T		TQ	PS		B. Dump	30	46		1960

Model	# Axles	Engine Make	Engine Model	Drive H.P.	Shift Type	Туре	Weight	Type	Standard Hauling Unit Cubic Yards Struck	Heaped	Year From	rs Built To
							Weight	**		•	110111	
34LDT-141W 34LDT-144W	3 3	GM GM	12V-71 12V-71		TQ TQ	PS PS		B. Dump B. Dump	40 40	62 62		1960 1962
36LDT-141W	3	Cum	NVH		TQ	PS		B. Dump	40	62		1960
36LDT-144W	3	Cum	NVH		TQ	PS		B. Dump	40	62		1962
SS-18 (23TDT-36SH)	3	GM	12V-71		TQ	PS	71,300	Scraper	18	25		1961
SS-18 (14RDR-36SH)	3	Cum			TQ	PS	56,900	Scraper	18	25		1961
SS-24 (28LDT-32SH)	3	GM	6-110		TQ	PS		Scraper	24	32		1959
SS-24 (33LDT-32SH)	3	Cum	NRTO-6-BI		TQ	PS	60,000	Scraper	24	32		1959
SS-24 (37LDT-32SH) SS-24 (34LDT-32SH)	3 3	GM GM	6-110T 12V-71		TQ TQ	PS PS	69,000 71,300	Scraper Scraper	24 24	32 32		1960 1963
SS-23 (36LDT-32SH)	3	Cum	NVH		TQ	PS	74,500	Scraper	24	32		1963
SS-28 (49LDT-53SH)	3	GM	12V-71N	475	TQ	PS	90,800	Scraper	28	38		1966
SS-28 (36LDT-53SH)	3	Cum	NVH-12	450	TQ	PS	92,700	Scraper	28	38		1966
SS-33 (34LDT-42SH)	3	GM	12V-71		TQ	PS	88,000	Scraper	33	43		1961
SS-40 (34LDT-47SH)	3	GM	12V-71		TQ	PS	99,400	Scraper	40	52		1962
SS-40 (36LDT-47SH)	3	Cum	NVH	475	TQ	PS	101,000	Scraper	40	52		1962
SS-40 (49LDT-52SH) SS-40 (36LDT-52SH)	3 3	GM Cum	12V-71N	475 450	TQ TQ	PS PS	101,500 102,100	Scraper Scraper	40 40	52 52		1968 1967
B-63 (49LDT-144W)	3	GM	12V-71N	430	TQ	PS	102,100	Wagon	42	64		1964
B-63 (36LDT-144W)	3	Cum	NVH		TQ	PS		Wagon	42	64		1964
B-100 (201LDT-146W)	3	GM	16V-71N	607	TQ	PS	110,100	Wagon	60	78		Current
B-100 (201LDT-201W)	3	GM	16V-71N	607	TQ	PS	113,900	-	60	78		Current
B-100 (46LDT-146W)	3	Cum	VT-12-635	600	TQ	PS	110,100	Wagon	60	78		Current
B-110 (201LDT-201W)	3	GM	16V-71N	607	TQ	PS	116,900		67.5	85		Current
SS-24 (49LDT-77SH)	3	GM		475 450	TQ	PS	78,300	Scraper	24	32		1968
SS-24 (36LDT-77SH)	3 3	Cum GM		450 475	TQ TQ	PS PS	79,000	Scraper Wagon	24 42	32 64		1967 Current
B-63 (49LDT-147W) B-63 (36LDT-147W)	3	Cum		475 450	TQ	PS PS		Wagon Wagon	42 42	64 64		1967
B-63 (203LDT-147W)	3	GM	12V-71N	440	TQ	PS	77,375	wagon	42	56		Current
B-70 (203LDT-147W)	3	GM	12V-71N	440	TQ	PS	79,000		47	62		Current
EWD Weener												
FWD-Wagner WSC-4 (LS-8)	3	GM	4-53	<u>max</u> 125	TQ	PS	29,000	Elevating		8	1966	1968
W3C-4 (L3-6)	3	GIVI	4-33	123	IQ	FS	29,000	Scraper		0	1900	1900
	01 1		4.0									
Hancock Divisio				•								
292B	2	GM	4-71N	160	TQ	PS	33,300	Elevating		11	1966	1969
								Scraper				
2020	0	CM	4 741	460	TO	DC	24.000			4.4	1000	Current
292C	2	GM	4-71N	160	TQ	PS	34,000	Elevating		11	1969	Current
								Elevating Scraper				
292C 294	2	GM GM(2)	4-71N 4-71N(2)	160 160	TQ TQ	PS PS	34,000 52,000	Elevating		11 16	1969 1969	Current Current
294	2	GM(2)	4-71N(2)	160				Elevating Scraper Elevating Scraper	national Con	16	1969	Current
International Ha	vester C	GM(2)	4-71N(2)	160	TQ	PS	52,000	Elevating Scraper Elevating Scraper	national Con	16 structio	1969 n Equi	Current pment)
International Har	vester C	GM(2) Company Cum	4-71N(2) y HRB-600	160 flywheel 165	TQ DD	PS MS	52,000 37,600	Elevating Scraper Elevating Scraper (Intern Scraper	10	16 structio	1969 n Equi 1954	Current pment) 1955
294 International Har 2T-55/2S-55 55 (551)	rvester C	GM(2) Company Cum Cum	4-71N(2) y HRB-600 HR-6-B1	160 flywheel 165 175	TQ DD DD	PS MS MS	52,000 37,600 40,865	Elevating Scraper Elevating Scraper (Intern Scraper Scraper	10 10.3	16 structio 13 14	1969 n Equi 1954 1955	Current pment) 1955 1962
294 International Har 2T-55/2S-55 55 (551) 2T-75/2S-75	2 rvester C	GM(2) Company Cum Cum Cum Cum	4-71N(2) y HRB-600 HR-6-B1 NHB-600	160 flywheel 165 175 200	TQ DD	PS MS MS MS	52,000 37,600 40,865 51,800	Elevating Scraper Elevating Scraper (Intern Scraper Scraper Scraper	10 10.3 14	16 structio 13 14 18	1969 n Equi 1954 1955 1954	Current pment) 1955 1962 1955
294 International Har 2T-55/2S-55 55 (551)	rvester C	GM(2) Company Cum Cum	4-71N(2) y HRB-600 HR-6-B1	160 flywheel 165 175	DD DD DD	PS MS MS	52,000 37,600 40,865	Elevating Scraper Elevating Scraper (Intern Scraper Scraper	10 10.3	16 structio 13 14	1969 n Equi 1954 1955	Current pment) 1955 1962
294 International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295	2 rvester C 2 2 2 2 2 2 2 2 2 2	GM(2) Company Cum Cum Cum Cum H IH	4-71N(2) Y HRB-600 HR-6-B1 NHB-600 NTO-6-BI	160 flywheel 165 175 200 262 266 385	DD DD DD TQ TQ	MS MS MS MS PS PS	37,600 40,865 51,800 54,345	Elevating Scraper Elevating Scraper (Intern Scraper Scraper Scraper Scraper Scraper Scraper Scraper Scraper	10 10.3 14 15 14 24	16 Structio 13 14 18 20 19 34	1969 n Equi 1954 1955 1954 1955 1962 1959	Current pment) 1955 1962 1962 Current 1961
294 International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GM(2) Company Cum Cum Cum Cum IH IH	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817 DT-817	flywheel 165 175 200 262 266 385 375	DD DD DD DD TQ TQ TQ	MS MS MS MS PS PS PS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160	Elevating Scraper Elevating Scraper (Intern Scraper Scraper Scraper Scraper Scraper Scraper Scraper Scraper Scraper Scraper	10 10.3 14 15 14 24 24	16 structio 13 14 18 20 19 34 34	1969 n Equi 1954 1955 1954 1955 1962 1959 1961	Current 1955 1962 1955 1962 Current 1961 1963
294 International Hall 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-B	2 rvester C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GM(2) Company Cum Cum Cum Cum IH IH IH	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817 DT-817	flywheel 165 175 200 262 266 385 375 394	TQ DD DD DD TQ TQ TQ TQ	MS MS MS MS PS PS PS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950	Elevating Scraper Elevating Scraper (Intern Scraper Scraper Scraper Scraper Scraper Scraper Scraper Scraper Scraper Scraper Scraper	10 10.3 14 15 14 24 24 24	16 Structio 13 14 18 20 19 34 34 32	1969 n Equi 1954 1955 1954 1955 1962 1969 1961 1962	Current 1955 1962 1955 1962 Current 1961 1963 1968
294 International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295 295-B 295-B	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GM(2) Company Cum Cum Cum Cum H IH IH IH	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817 DT-817 DT-817 DT-817	flywheel 165 175 200 262 266 385 375 394 396	DD DD DD TQ TQ TQ TQ TQ	PS MS MS MS PS PS PS PS PS	37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340	Elevating Scraper Elevating Scraper (Intern Scraper	10 10.3 14 15 14 24 24 24 24	16 Structio 13 14 18 20 19 34 34 32 32	1969 n Equi 1954 1955 1954 1955 1962 1959 1961 1962 1968	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current
294 International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-B 295-B 295-B 495	2 2 2 2 2 2 2 2 2 2 2 2 3	GM(2) Company Cum Cum Cum IH IH IH IH	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817 DT-817 DT-817 DT-817 DT-817B DT-817	flywheel 165 175 200 262 266 385 375 394 396 385	DD DD DD TQ TQ TQ TQ TQ TQ TQ	PS MS MS MS MS PS PS PS PS PS	37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580	Elevating Scraper Elevating Scraper (Intern Scraper	10 10.3 14 15 14 24 24 24 24 24	16 Structio 13 14 18 20 19 34 34 34 32 32 32 34	1969 n Equi 1954 1955 1954 1955 1962 1969 1961 1962 1968 1968 1958	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1961
294 International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295 295-B 295-B	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GM(2) Company Cum Cum Cum Cum H IH IH IH	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817 DT-817 DT-817 DT-817	flywheel 165 175 200 262 266 385 375 394 396	DD DD DD TQ TQ TQ TQ TQ	PS MS MS MS PS PS PS PS PS	37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340	Elevating Scraper Elevating Scraper (Intern Scraper	10 10.3 14 15 14 24 24 24 24	16 Structio 13 14 18 20 19 34 34 32 32	1969 n Equi 1954 1955 1954 1955 1962 1969 1961 1962 1968 1958 1958	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current
294 International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-8 295-B 495 495	2 2 2 2 2 2 2 2 2 2 2 2 2 3 3	GM(2) Company Cum Cum Cum H IH IH IH IH	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817 DT-817 DT-817 DT-817 DT-817B DT-817 DT-817	flywheel 165 175 200 262 266 385 375 394 396 385 375	DD DD DD TQ TQ TQ TQ TQ TQ TQ TQ	MS MS MS MS PS PS PS PS PS PS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610	Elevating Scraper Elevating Scraper (Intern Scraper	10 10.3 14 15 14 24 24 24 24 24 24	16 structio 13 14 18 20 19 34 34 34 32 32 34 34	1969 n Equi 1954 1955 1954 1955 1962 1969 1961 1962 1968 1968 1958	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1961 1965
294 International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-B 295-B 495 495 495 495 E-200	2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2	GM(2) Company Cum Cum Cum Cum H H H H H H H H H	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817 DT-817 DT-817 DT-817 DT-817 DT-817 DT-817 DT-817 DT-817 DT-817 DT-817 DT-817 DT-817	flywheel 165 175 200 262 266 385 375 394 396 385 375 385 375 385	DD DD DD TQ	MS MS MS PS	37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610 59,480 60,600 26,900	Elevating Scraper Elevating Scraper (Intern Scraper Wagon Wagon	10 10.3 14 15 14 24 24 24 24 24 24 24	16 Structio 13 14 18 20 19 34 34 32 32 34 34 40.5 9.5	1969 n Equi 1954 1955 1955 1962 1959 1961 1962 1968 1958 1961 1958 1961 1958 1961 1956	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1961 1965 1961 1965 Current
294 International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-B 295-B 295-B 495 495 495 495 E-200 E-211	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GM(2) Company Cum Cum Cum IH IH IH IH IH IH IH	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817 DT-407	flywheel 165 175 200 262 266 385 375 394 396 385 375 385 375 385 375 135	DD DD DD TQ	MS MS MS PS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610 59,480 60,600 26,900 27,450	Elevating Scraper Elevating Scraper (Intern Scraper	10 10.3 14 15 14 24 24 24 24 24 24 24	16 Structio 13 14 18 20 19 34 34 34 32 32 34 34 40.5 9.5 11	1969 n Equi 1954 1955 1954 1962 1962 1959 1961 1962 1968 1958 1961 1958 1961 1958 1961 1966 1969	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1961 1965 1961 1965 Current Current
294 International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-B 295-B 495 495 495 495 E-200 E-211 E-270	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GM(2) Company Cum Cum Cum IH IH IH IH IH IH IH IH	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817	flywheel 165 175 200 262 266 385 375 394 396 385 375 385 375 135 150 266	DD DD DD TQ	MS MS MS PS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610 59,480 60,600 26,900 27,450 51,700	Elevating Scraper Elevating Scraper (Intern Scraper Wagon Wagon	10 10.3 14 15 14 24 24 24 24 24 24 24	16 structio 13 14 18 20 19 34 34 32 32 34 34 40.5 40.5 9.5 11 21	1969 n Equi 1954 1955 1954 1955 1962 1969 1961 1962 1968 1958 1961 1958 1961 1966 1969 1965	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1961 1965 1961 1965 Current Current Current
294 International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-B 295-B 295-B 495 495 495 495 E-200 E-211	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GM(2) Company Cum Cum Cum IH IH IH IH IH IH IH	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817 DT-407	flywheel 165 175 200 262 266 385 375 394 396 385 375 385 375 385 375 135	DD DD DD TQ	MS MS MS PS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610 59,480 60,600 26,900 27,450	Elevating Scraper Elevating Scraper (Intern Scraper	10 10.3 14 15 14 24 24 24 24 24 24 24	16 Structio 13 14 18 20 19 34 34 34 32 32 34 34 40.5 9.5 11	1969 n Equi 1954 1955 1954 1962 1962 1959 1961 1962 1968 1958 1961 1958 1961 1958 1961 1966 1969	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1961 1965 1961 1965 Current Current
294 International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-B 295-B 295-B 495 495 495 495 E-200 E-211 E-270 E-295	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GM(2) Company Cum Cum Cum IH IH IH IH IH IH IH IH	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817	flywheel 165 175 200 262 266 385 375 394 396 385 375 385 375 385 375 135 150 266 396	DD DD DD TQ	MS MS MS PS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610 59,480 60,600 26,900 27,450 51,700	Elevating Scraper Elevating Scraper (Intern Scraper	10 10.3 14 15 14 24 24 24 24 24 24 24	16 structio 13 14 18 20 19 34 34 32 32 34 34 40.5 40.5 9.5 11 21	1969 n Equi 1954 1955 1954 1955 1962 1969 1961 1962 1968 1958 1961 1958 1961 1966 1969 1965	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1961 1965 1961 1965 Current Current Current
294 International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-B 295-B 495 495 495 495 E-200 E-211 E-270	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GM(2) Company Cum Cum Cum IH IH IH IH IH IH IH IH	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817	flywheel 165 175 200 262 266 385 375 394 396 385 375 385 375 135 150 266	DD DD DD TQ	MS MS MS PS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610 59,480 60,600 26,900 27,450 51,700	Elevating Scraper Elevating Scraper (Intern Scraper	10 10.3 14 15 14 24 24 24 24 24 24 24	16 structio 13 14 18 20 19 34 34 32 32 34 34 40.5 40.5 9.5 11 21	1969 n Equi 1954 1955 1954 1955 1962 1969 1961 1962 1968 1958 1961 1958 1961 1966 1969 1965	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1961 1965 1961 1965 Current Current Current
294 International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-B 295-B 495 495 495 495 E-200 E-211 E-270 E-295 M-R-S Manufactor 150 150	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GM(2) Company Cum Cum Cum H H H H H H H H H Cum Cum	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817	flywheel 165 175 200 262 266 385 375 394 396 385 375 385 375 135 150 266 396 rated 210 280	DD DD DD DD TQ	MS MS MS MS PS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610 59,480 60,600 26,900 27,450 51,700	Elevating Scraper Elevating Scraper (Intern Scraper	10 10.3 14 15 14 24 24 24 24 27 27	16 structio 13 14 18 20 19 34 34 32 32 34 40.5 40.5 9.5 11 21 32	1969 n Equi 1954 1955 1954 1955 1962 1961 1962 1968 1961 1958 1961 1958 1961 1969 1965 1968	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1961 1965 1961 1965 Current Current Current
International Had 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-B 295-B 495 495 495 495 E-200 E-211 E-270 E-295 M-R-S Manufacto	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GM(2) Company Cum Cum Cum Cum H H H H H H H Cum Cum	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817	flywheel 165 175 200 262 266 385 375 394 396 385 375 385 375 135 150 266 396 rated 210 280 288	DD DD DD TQ	MS MS MS PS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610 59,480 60,600 26,900 27,450 51,700	Elevating Scraper Elevating Scraper (Intern Scraper Sc	10 10.3 14 15 14 24 24 24 24 27 27 27	16 Structio 13 14 18 20 19 34 34 32 32 34 40.5 40.5 9.5 11 21 32	1969 n Equi 1954 1955 1954 1955 1962 1959 1961 1968 1958 1961 1966 1969 1965 1968 1958 1961 1966 1969 1965 1968	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1961 1965 1961 1965 Current Current Current Current
International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-B 295-B 495 495 495 495 E-200 E-211 E-270 E-295 M-R-S Manufactors	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GM(2) Company Cum Cum Cum Cum H H H H H H H H H H Cum	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817	flywheel 165 175 200 262 266 385 375 394 396 385 375 385 375 150 266 396 rated 210 280 288 430	DD DD DD DD TQ	MS MS MS MS PS PS PS PS PS PS PS PS PS MS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610 59,480 60,600 26,900 27,450 51,700	Elevating Scraper Elevating Scraper (Intern Scraper Sc	10 10.3 14 15 14 24 24 24 24 27 27 27	16 Structio 13 14 18 20 19 34 34 34 34 40.5 40.5 9.5 11 21 32 18 24 20 40	1969 n Equi 1954 1955 1955 1962 1959 1961 1962 1968 1958 1961 1958 1961 1966 1969 1965 1968	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1961 1965 1961 1965 Current Current Current Current 1971 1961 1968
International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-B 295-B 295-B 495 495 495 E-200 E-211 E-270 E-295 M-R-S Manufactors	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GM(2) Company Cum Cum Cum H H H H H H H H Cum Cum	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817	flywheel 165 175 200 262 266 385 375 394 396 385 375 385 375 135 150 266 396 rated 210 280 288 430 335	DD DD DD DD TQ	MS MS MS MS PS PS PS PS PS PS PS PS PS MS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610 59,480 60,600 26,900 27,450 51,700	Elevating Scraper Elevating Scraper (Intern Scraper Cable Cable Cable Hydraulic Cable	10 10.3 14 15 14 24 24 24 24 27 27 27	16 Structio 13 14 18 20 19 34 34 34 34 40.5 9.5 11 21 32 18 24 20 40 24	1969 n Equi 1954 1955 1954 1955 1962 1959 1961 1962 1968 1958 1961 1966 1969 1965 1968 1952 1961 1952 1961 1955 1961 1955	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1961 1965 Current Current Current Current 1961 1971 1961 1968 1961
International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-B 295-B 295-B 495 495 495 E-200 E-211 E-270 E-295 M-R-S Manufactors	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4	GM(2) Company Cum Cum Cum H H H H H H H Cum Cum	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817	flywheel 165 175 200 262 266 385 375 394 396 385 375 385 375 135 150 266 396 rated 210 280 288 430 335 500	DD DD DD TQ	MS MS MS MS PS PS PS PS PS PS PS PS PS MS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610 59,480 60,600 26,900 27,450 51,700	Elevating Scraper Elevating Scraper (Intern Scraper Cable Cable Cable Hydraulic Cable Hydraulic	10 10.3 14 15 14 24 24 24 24 27 27 27	16 Structio 13 14 18 20 19 34 34 34 32 32 34 40.5 40.5 9.5 11 21 32 18 24 20 40 24 46.5	1969 n Equi 1954 1955 1954 1955 1962 1969 1961 1968 1958 1961 1958 1961 1966 1969 1965 1968	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1961 1965 Current Current Current Current Current 1961 1971
International Hair 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-B 295-B 495 495 495 495 E-200 E-211 E-270 E-295 M-R-S Manufactors	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GM(2) Company Cum Cum Cum H H H H H H H Cum Cum	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817	flywheel 165 175 200 262 266 385 375 394 396 385 375 385 375 135 150 266 396 rated 210 280 288 430 335 500 525	DD DD DD TQ	MS MS MS PS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610 59,480 60,600 26,900 27,450 51,700	Elevating Scraper Elevating Scraper (Intern Scraper Sc	10 10.3 14 15 14 24 24 24 24 27 27 27	16 Structio 13 14 18 20 19 34 34 34 32 32 34 40.5 40.5 9.5 11 21 32 18 24 20 40 40 24 46.5 41	1969 n Equi 1954 1955 1954 1955 1962 1969 1961 1962 1958 1961 1966 1969 1965 1968 1952 1961 1955 1961 1955 1961 1955 1961	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1965 1961 1965 Current Current Current Current 1961 1971 1961 1968 1961 1971 1961 1971 1952
International Hair 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-B 295-B 495 495 495 495 E-200 E-211 E-270 E-295 M-R-S Manufactor 150 150 190 200 200 200 200 200	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4	GM(2) Company Cum Cum Cum Cum H H H H H H H H H H Cum	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817	flywheel 165 175 200 262 266 385 375 394 396 385 375 135 150 266 396 rated 210 280 288 430 335 500 525 525	DD DD DD TQ	MS MS MS MS MS PS PS PS PS PS PS PS PS MS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610 59,480 60,600 26,900 27,450 51,700	Elevating Scraper Elevating Scraper (Intern Scraper Sc	10 10.3 14 15 14 24 24 24 24 27 27 27	16 Structio 13 14 18 20 19 34 34 32 32 34 40.5 40.5 9.5 11 21 32 18 24 20 40 24 46.5 41 48	1969 n Equi 1954 1955 1954 1955 1962 1959 1961 1968 1958 1961 1966 1969 1965 1968 1952 1961 1955 1961 1955 1961 1955 1961 1955 1961 1959 1965	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1961 1965 1961 1965 Current Current Current Current 1961 1971 1961 1968 1961 1971 1968 1961 1971 1952 1959
International Hair 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-B 295-B 495 495 495 495 E-200 E-211 E-270 E-295 M-R-S Manufactors	2 rvester C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GM(2) Company Cum Cum Cum H H H H H H H Cum Cum	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817	flywheel 165 175 200 262 266 385 375 394 396 385 375 385 375 135 150 266 396 rated 210 280 288 430 335 500 525	DD DD DD TQ	MS MS MS PS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610 59,480 60,600 26,900 27,450 51,700	Elevating Scraper Elevating Scraper (Intern Scraper Sc	10 10.3 14 15 14 24 24 24 24 27 27 27	16 Structio 13 14 18 20 19 34 34 34 32 32 34 40.5 40.5 9.5 11 21 32 18 24 20 40 40 24 46.5 41	1969 n Equi 1954 1955 1954 1955 1962 1969 1961 1962 1958 1961 1966 1969 1965 1968 1952 1961 1955 1961 1955 1961 1955 1961	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1965 1961 1965 Current Current Current Current 1961 1971 1961 1968 1961 1971 1961 1971 1952
International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-B 295-B 495 495 495 495 E-200 E-211 E-270 E-295 M-R-S Manufactors 150 190 200 200 200 200 250	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4	GM(2) Company Cum Cum Cum H H H H H H H Cum Cum	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817	flywheel 165 175 200 262 266 385 375 394 396 385 375 385 375 135 150 266 396 rated 210 280 288 430 335 500 525 525 635	DD DD DD TQ	MS MS MS PS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610 59,480 60,600 26,900 27,450 51,700	Elevating Scraper Elevating Scraper (Intern Scraper Hydraulic Cable Hydraulic Cable Hydraulic Hydraulic Hydraulic	10 10.3 14 15 14 24 24 24 24 24 27 27 27	16 Structio 13 14 18 20 19 34 34 34 34 40.5 40.5 9.5 11 21 32 18 24 20 40 24 46.5 41 48 50	1969 n Equi 1954 1955 1954 1962 1969 1961 1968 1958 1961 1966 1969 1965 1968 1959 1961 1955 1961 1955 1961 1955 1961 1955 1961 1959 1962 1956 1958	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1961 1965 1961 1965 Current Current Current Current 1961 1971 1961 1968 1961 1971 1968 1961 1971 1962
International Hair 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-B 295-B 495 495 495 E-200 E-211 E-270 E-295 M-R-S Manufaction 150 150 150 150 150 190 200 200 200 200 200 250 250 25	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GM(2) Company Cum Cum Cum Cum H H H H H H H H H Cum	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817	flywheel 165 175 200 262 266 385 375 394 396 385 375 135 150 266 396 rated 210 280 288 430 335 500 525 635 635 635 860 1065	DD	MS MS MS MS PS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610 59,480 60,600 26,900 27,450 51,700	Elevating Scraper Elevating Scraper Sc	10 10.3 14 15 14 24 24 24 24 22 27 27 27 27	16 Structio 13 14 18 20 19 34 34 34 32 32 34 40.5 40.5 9.5 11 21 32 18 24 20 40 24 46.5 41 48 50 58	1969 n Equi 1954 1955 1954 1962 1969 1961 1968 1958 1961 1966 1969 1965 1968 1959 1961 1955 1961 1955 1961 1955 1961 1955 1961 1959 1962 1956 1958	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1961 1965 1961 1965 Current Current Current Current 1961 1971 1961 1968 1961 1971 1968 1961 1971 1968 1961 1971 1952 1959 1962 Current Current Current Current Current
International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-B 295-B 495 495 495 495 E-200 E-211 E-270 E-295 M-R-S Manufactors 150 150 190 200 200 200 200 200 200 250 25	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4	GM(2) Company Cum Cum Cum Cum H H H H H H H H H H Cum	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817	flywheel 165 175 200 262 266 385 375 394 396 385 375 135 150 266 396 rated 210 280 288 430 335 500 525 635 635 635 860 1065 635	DD	PS MS MS MS MS PS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610 59,480 60,600 26,900 27,450 51,700	Elevating Scraper Elevating Scraper Hydraulic Cable Hydraulic B. Dump	10 10.3 14 15 14 24 24 24 24 27 27 27 27	16 Structio 13 14 18 20 19 34 34 34 40.5 40.5 9.5 11 21 32 18 24 20 40 24 46.5 41 48 50 58 53	1969 n Equi 1954 1955 1954 1955 1962 1969 1961 1968 1958 1961 1958 1961 1966 1968 1965 1968 1965 1968 1959 1965 1968 1959 1965 1961 1959 1962 1956 1958 1960 1962	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1961 1965 1961 1965 Current Current Current Current 1961 1971 1961 1968 1961 1971 1952 1959 1962 Current
International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295-B 295-B 295-B 495 495 495 495 E-200 E-211 E-270 E-295 M-R-S Manufactors 150 150 150 190 200 200 200 200 200 250 250 B Twin 250 1-80T	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4	GM(2) Company Cum Cum Cum Cum H H H H H H H H Cum Cum	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817	flywheel 165 175 200 262 266 385 375 394 396 385 375 135 150 266 396 rated 210 280 288 430 335 500 525 525 635 635 860 1065 635 141	DD DD DD TQ TQ TQ DD	PS MS MS MS PS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610 59,480 60,600 26,900 27,450 51,700	Elevating Scraper Elevating Scraper Hydraulic Cable Hydraulic Cable Hydraulic	10 10.3 14 15 14 24 24 24 24 22 27 27 27 27	16 Structio 13 14 18 20 19 34 34 34 40.5 40.5 9.5 11 21 32 18 24 20 40 24 46.5 41 48 50 58 53	1969 n Equi 1954 1955 1954 1962 1959 1961 1962 1968 1958 1961 1966 1969 1965 1968 1952 1961 1952 1961 1959 1962 1966 1958 1960 1962	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1961 1965 1961 1965 Current Current Current Current 1961 1971 1961 1968 1961 1971 1962 1959 1962 Current Current Current Current Current Current Current 1969
International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295 295-B 295-B 295-B 495 495 495 E-200 E-211 E-270 E-295 M-R-S Manufactors 150 150 150 190 200 200 200 200 200 200 200 2	2 rvester C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4	GM(2) Company Cum Cum Cum Cum H H H H H H H Cum Cum	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817	flywheel 165 175 200 262 266 385 375 394 396 385 375 385 375 150 266 396 rated 210 280 288 430 335 500 525 525 635 635 635 860 1065 635 141 159	DD DD DD TQ TQ TQ TQ TQ DD	PS MS MS MS MS PS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610 59,480 60,600 26,900 27,450 51,700	Elevating Scraper Elevating Scraper (Intern Scraper Hydraulic Cable Hydraulic Cable Hydraulic	10 10.3 14 15 14 24 24 24 24 22 27 27 27 27	16 Structio 13 14 18 20 19 34 34 34 40.5 40.5 9.5 11 21 32 18 24 20 40 24 46.5 41 48 50 58 53	1969 n Equi 1954 1955 1954 1962 1959 1961 1962 1968 1958 1961 1958 1961 1966 1969 1965 1968 1952 1961 1955 1961 1955 1961 1959 1962 1956 1956 1956 1956 1956 1956 1956 1956	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1961 1965 1961 1965 Current Current Current Current 1961 1971 1961 1968 1961 1971 1952 1959 1962 Current 1969 1969
International Ham 2T-55/2S-55 55 (551) 2T-75/2S-75 75 (751) 270 295 295-B 295-B 295-B 495 495 495 495 E-200 E-211 E-270 E-295 M-R-S Manufactors 150 150 150 190 200 200 200 200 200 250 250 B Twin 250 1-80T	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4	GM(2) Company Cum Cum Cum Cum H H H H H H H H Cum Cum	4-71N(2) HRB-600 HR-6-B1 NHB-600 NTO-6-BI DVT-573B DT-817	flywheel 165 175 200 262 266 385 375 394 396 385 375 135 150 266 396 rated 210 280 288 430 335 500 525 525 635 635 860 1065 635 141	DD DD DD TQ TQ TQ DD	PS MS MS MS PS	52,000 37,600 40,865 51,800 54,345 44,540 77,130 77,160 72,950 74,340 75,580 76,610 59,480 60,600 26,900 27,450 51,700	Elevating Scraper Elevating Scraper Hydraulic Cable Hydraulic Cable Hydraulic	10 10.3 14 15 14 24 24 24 24 22 27 27 27 27	16 Structio 13 14 18 20 19 34 34 34 40.5 40.5 9.5 11 21 32 18 24 20 40 24 46.5 41 48 50 58 53	1969 n Equi 1954 1955 1954 1962 1959 1961 1962 1968 1958 1961 1966 1969 1965 1968 1952 1961 1952 1961 1959 1962 1966 1958 1960 1962	Current 1955 1962 1955 1962 Current 1961 1963 1968 Current 1961 1965 1961 1965 Current Current Current Current 1961 1971 1961 1968 1961 1971 1962 1959 1962 Current Current Current Current Current Current Current 1969

Madal	# Avles	Engine	Engine Model	Drive	Shift	T	\A/a:~b4	Tuna	Standard Hauling Unit Cubic Yards	Usened		rs Built
Model 1-105S-105ES	# Axles	Make GM	Model	H.P. 373	Type TQ	Type PS	Weight	Type Elevating	Struck	Heaped	From 1968	To Current
1-105KS-100ES 1-110S-110ES	3	GM GM		422 482	TQ TQ	PS PS		Elevating Elevating			1971 1971	Current Current
TEREX Division	- Genera	l Motors	Corporation	on								
S-7 (3UOT-26SH)	2	GM	4-71	148	TQ	PS	26,590	Scraper	7	9	1955	1970
S-11E	2	GM	4-71N	160	TQ	PS	33,300	E. Scraper		11	1969	Current
S-12 (78FOT-29SH)	2	GM	6-71	227	TQ	PS	46,100	Scraper	12	16	1955	1962
S-7H/S-12E S-18 (27LOT-28SH)	2 2	GM GM	4-71 6-110	148 336	TQ TQ	PS PS	33,370 68,400	E. Scraper Scraper	18	12 25	1965 1955	1969 1956
S-18 (30LOT-28SH)	2	GM	6-110	336	TQ	PS	66,700	Scraper	18	25 25	1957	1958
S-18 (30LOT-46SH)	2	GM	6-110	336	TQ	PS	67,000	Scraper	18	25	1958	1961
S-24 (39LOT-46SH)	2	GM	12V-71	432	TQ	PS	72,860	Scraper	24	32	1961	1962
S-24 (39LOT-55SH)	2	GM	12V-71	432	TQ	PS	75,000	Scraper	24	32	1962	1965
S-24 (39LOT76SH)	2	GM	12V-71	432	TQ	PS	79,350	Scraper	24	32	1966	1968
S-24 (49LOT-76SH)	2 2	GM	12V-71T	465 475	TQ	PS PS	80,850	Scraper	24	32	1969	Current 1966
S-28 (38LOT-50SH) S-32 (47LOT-79SH)	2	GM GM	12V-71N 12V-71T	475 525	TQ TQ	PS PS	91,400 107,000	Scraper Scraper	28 32	40 43	1963 1967	Current
S-35E (47LOT-90SH)	2	GM	12V-71T	500	TQ	PS	98,900	E. Scraper	32	35	1968	Current
TS-14 (6UOT-38SH)	2 (2)	Oiii	4-71	296	TQ	PS	53,300	Scraper	14	20	1959	1964
TS-14 (7UOT-61SH)	2 (2)		4-71	296	TQ	PS	53,300	Scraper	14	20	1964	1966
TS-14 (13UOT-81SH)	2 (2)		4-71N	320	TQ	PS	53,300	Scraper	14	20	1967	Current
TS-14 Tandem	3 (3)		4-71	444	TQ	PS	93,600	Scraper	28	40	1965	1966
(7UOT-63SH-62SH)	- (-)							_				
TS-14 Tandem	3 (3)		4-71N	480	TQ	PS	93,600	Scraper	28	40	1967	1969
(13UOT-82SH-83SH) TS-18 (29LOT-27SH)	2 (2)		6-71	436	TQ	PS	78,200	Scraper	18	25	1955	1957
TS-18 (33 TOT-92SH)	2 (2)	GM	8V-71N	556	TQ	PS	72,000	Scraper	18	23	1971	Current
TS-24 (31LOT-33SH)	2	GM	6V-71N 6-110	554	TQ	PS	76,100	Scraper	24	32	1957	1962
TS-24 (31LOT-56SH)	2	GM	6-71 6-110	563	TQ	PS	82,800	Scraper	24	32	1963	1965
TS-24 (39LOT-56SH)	2	GM	6-71 12V-71	659	TQ	PS	84,800	Scraper	24	32	1963	1965
TS-24 (43LOT-78SH)	2	GM	6-71 12V-71	659	TQ	PS	91,000	Scraper	24	32	1966	1971
TS-24 (43 LOT-78SH)	2	GM	6-71 12V-71N	672	TQ	PS	91,000	Scraper	24	32	1971	Current
TS-32 (47LOT-80SH)	2	GM	6-71N 12V-71T	875	TQ	PS	124,500	Scraper	32	43	1966	Current
10 32 (47201 30011)	_	OW	8V-71T	010	100	10	124,500	Octoper	<i>52</i>	40	1300	Ouron
WABCO				<u>rated</u>								
D Roadster	2	GM	4-71	122				Scraper	5.9	7		1953
Tournapull								R. Dump	7	8		
(Step Gear)	2	GM	4-71	122				Coronor	6.6	7.5		1954
Tournapull (Step Gear)	2	GIVI	4-71	122				Scraper R. Dump	6.6 7	7.5 8		1954
(Step Geal)		GM	4-71	138				Scraper	6.6	7.5		1958
		O.V.		100				R. Dump	7	8		1000
D Tournapull	2	GM	4-71	143			23,750	Scraper	7.3	9		1960
(Step Gear or								R. Dump	7	8		
Power Shift)		GM	4-71	148			23,070	Scraper	7.3	9		1969
4004	0	OM	4.741	400		DC	00.070	R. Dump	7	8		0
109A 111A	2 2	GM GM	4-71N 4-71N	160 160		PS PS	23,070 30,300	Scraper Elevating	7.3	9 11		Current Current
						10	30,300	Scraper				
C Roadster Tournapull	2	Cum	HRB-600	165				Scraper R. Dump	11 13	14 17		1950
(Step Gear)		Buda	6DC-844	180				Scraper	11	14		1950
								R. Dump	13	17		
		GM	6-71	186				Scraper	11	14		1951
C Tournamatia	0	CM	6.74	100				R. Dump	13	17		1052
C Tournamatic (Power Shift)	2	GM	6-71	186				Scraper R. Dump	12.2 13	16 17		1953
(1 Ower Shift)								B. Dump	14	16		
C Tournapull	2	Buda	A-8DA-844	200			43,860	Scraper	12.2	18		1955
(Step Gear or							,	R. Dump	14.7	22		
Power Shift)								B. Dump	14	16		
		GM	6-71	208			43,860	Scraper	12.2	18		157
		CNA	6 71	240			46.060	R. Dump	14.7	22		1057
		GM	6-71	210			46,860	Scraper R. Dump	12.2 14.7	18 22		1957
		Cum	HBIS-600	200			43,860	Scraper	12.2	18		1958
				_00			,	R. Dump	14.7	22		
		GM	6-71	218			43,860	Scraper R. Dump	12.2 14.7	18 22		1958
		Cum	HBIS-600	210			43,860	Scraper	12.2	18		1959
		GM	6-71	226			43,860	R. Dump Scraper	14.7 12.2	22 18		1959
		GIVI	0-71	220			-1 0,000	R. Dump	12.2 14.7	22		1303
								ix. Dunip	1-7.7	~~		

Model	# Axles	Engine Make	Engine Model	Drive H.P.	Shift Type	Туре	Weight	Туре	Standard Hauling Unit Cubic Yards Struck	Heaped	Year From	rs Built To
229 F C-222A	2 2	GM GM	8V-71N 8V-71	318 290		PS	52,600 57,050	Scraper Elevating Scraper	15 21	21		Current 1967
222F	2	GM	8V-71N	318		PS	58,200	Elevating Scraper		22		Current
V Powered C Tournapull (Step Gear)	2	GM	8V-71	270			43,860	Scraper R. Dump	12.2 14.7	18 22		1959
C500 Tournapull (Power Shift)	2	GM	8V-71	290			55,630	Scraper Tandem	16	21		1967
B Tournapull (Step Gear)	2	Cum	HRBIS-600	293			73,820	Scraper Scraper R. Dump	32 18 23	42 25 27		1956
, ,		GM	6-110	300			68,900	Scraper R. Dump	19.1 23	27 27		1957
		Cum	NRT-6-BI	300			68,900	Scraper R. Dump	19.1 23	27 27		1957
		GM	6-110	325			62,750	Scraper R. Dump	21 23	28 27		1958
		GM	6-110	335			62,750	Scraper R. Dump	21 23	28 27		1960
B Tournapull (Power Shift)	2	Cum	NRTO-6-BI	335			68,900	Scraper R. Dump	19.1 23	27 27		1959
B Tournapull (Step Gear or	2	Cum	NRTO-6-BI	335			68,900	Scraper R. Dump	19.1 23	27 27		1959
Power Shift)		GM	6-110T	360			62,750	Scraper R. Dump	21 23	28 27		1959
		GM	12V-71	430			70,500	Scraper R. Dump	23 23	29 27		1962
B-70 Tournapull (Power Shift)	2	GM	12V-71	475			71,860	Scraper Tandem	25	32		1967
333F	2	GM	12V-71N	475			111,915 94,285	Scraper Elevating Scraper	50	64 32		Current
333FT	2	GM	(2)12V-71TV	965		PS	94,285	Elevating Scraper		34		Current
339F 101F	2 2	GM Cum	12V-71N V-504	475 178		PS PS	86,500 27,900	Scraper Elevating	25	34 9	1970	Current Current

ORDER OF ARITHMATIC OPERATIONS

When performing a series of arithmetic operations (i.e. addition, subtraction, division, multiplication, exponents), you must perform those operations in a particular order. There is a mnemonic to help you remember the order - PEMDAS:

- Ρ **Parentheses**
- Ε **Exponents**
- M Multiplication
- D Division
- Α Addition
- S Subtraction

If you have a series of operations, do what's in parentheses first, then apply exponents, then do any multiplication or division, and finally do any adding or subtracting.

Example:

$$4+3\left(2-\frac{1}{4}\right)-2^3=?$$

Do what's in parentheses first (find LCD):

$$2 - \frac{1}{4} = \frac{8}{4} - \frac{1}{4} = \frac{7}{4}$$

So now we have:

$$4+3\left(\frac{7}{4}\right)-2^3=?$$

Now apply exponents: $2^3 = 8$

$$2^3 = 8$$

So now we have:

$$4+3\left(\frac{7}{4}\right)-8=?$$

Now do multiplication:

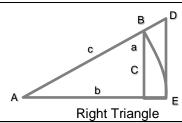
$$3\left(\frac{7}{4}\right) = \frac{21}{4}$$

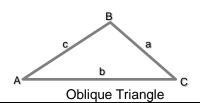
So now we have:

$$4 + \frac{21}{4} - 8$$

Now do addition and subtraction (find LCD):

$$4 + \frac{21}{4} - 8$$


Is the same as:


$$\frac{16}{4} + \frac{21}{4} - \frac{32}{4} = \frac{5}{4}$$

So our answer is:

$$\frac{5}{4}$$

MATHEMATICAL FORMULAS USED BY IDOT

Right Triangles

$$\sin A = \frac{a}{c} = \cos B$$

$$\cos A = \frac{b}{c} = \sin B$$

$$\tan A = \frac{a}{b} = \cot B$$

$$\sec A = \frac{c}{b} = \csc B$$

$$cosec A = \frac{c}{a} = \sec B$$

$$\cot A = \frac{b}{a} = \tan B$$

$$a = c \sin A = c \cos B = b \tan A = b \cot B = \sqrt{c^2 - b^2}$$

$$b = c \cos A = c \sin B = a \cot A = a \tan B = \sqrt{c^2 - a^2}$$

$$c = \frac{a}{\sin A} = \frac{a}{\cos B} = \frac{b}{\sin B} = \frac{b}{\cos A}$$

SIII A COS B SIII B COS A									
Oblique Triang									
Given	Sought		Formula						
A, B, a	b, c	$b = \frac{a}{\sin A} * \sin B$	$c = \frac{a}{\sin A} * \sin(A + B)$						
A, a, b	B, c	$\sin B = \frac{\sin A}{a} * b$	$c = \frac{a\sin(A + arc\sin(b\sin A/a))}{\sin A}$						
C, a, b	$\frac{1}{2}(A+B)$	$\frac{1}{2}(A+B) = 90^{o} - \frac{1}{2} C$							
O, u, b	$\frac{1}{2}(A-B)$	$Tan \frac{1}{2} (A - B) = \frac{a - b}{a + b} * t$	$\tan\frac{1}{2} (A+B)$						
a, b, c	A	Given $s = \frac{1}{2}(a+b+c)$, t	hen:						
		$\sin\frac{1}{2}A = \sqrt{\frac{(s-b)}{b}}$	$\frac{O(s-c)}{O(c)}$						
		$\cos\frac{1}{2}A = \sqrt{\frac{s(s-1)}{bc}}$	<u>a)</u>						
		$\tan\frac{1}{2}A = \sqrt{\frac{(s-b)}{s(s)}}$	$\frac{(s-c)}{(s-a)}$						
		$\sin A = 2 \frac{\sqrt{s(s-a)}}{a}$	$\frac{a)(s-b)(s-c)}{bc}$						
	Area	$Area = \sqrt{s(s-a)}$	$\overline{(s-b)(s-c)}$						
c, a, b	Area	$Area = \frac{1}{2} ab \sin C$							

Nomenclature

A = total surface area

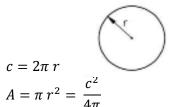
C = circumference

d = distance

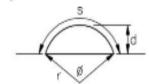
h = height

p = perimeter

r = radius

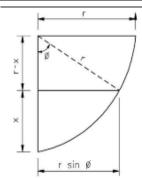

s = side (edge) length, arc length

V = volume


 θ = vertex angle, in radians

 \emptyset = central angle, in radians

Circle



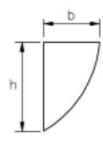
Circular Segment (1)

$$A = \frac{1}{2}r^2(\emptyset - sin - \emptyset)$$

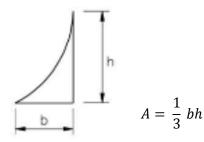
$$\emptyset = \frac{s}{r} = 2\left(\arccos\frac{r-d}{r}\right)$$

$\cos \emptyset = \frac{r - x}{r}$

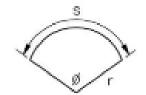
Area of Circle Segment


Circular Segment (2)

$$\frac{\emptyset}{360^{\circ}}\pi r^2$$


Area of Triangle

$$\frac{1}{2}(r-x)(r\sin\emptyset)$$


Parabola

$$A = \frac{2bh}{3}$$

Circular Sector

$$A = \frac{1}{2} \emptyset r^2 = \frac{1}{2} sr$$
$$\emptyset = \frac{s}{r}$$

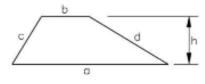
External Area

Total Area – Area of Circle Segment = External Area

$$t = \frac{r}{\tan\frac{\theta}{2}}$$

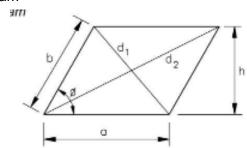
$$0 = 180^{\circ} - \theta$$

$$\emptyset = 180^{\circ} - \theta$$


$$Total Area = rt = \frac{r^2}{tan\frac{\theta}{2}}$$

Ext. Area =
$$r^2 \left[\frac{1}{\tan \frac{\theta}{2}} - \pi \frac{\emptyset}{360} \right]$$

Number of Sides	Name of Polygon	Triangle
3 4 5 6 7 8 9	triangle rectangle pentagon hexagon heptagon octagon nonagon decagon	$A = \frac{1}{2} bh$


Trapezoid

$$p = a + b + c + d$$
$$A = \frac{1}{2} h (a + b)$$

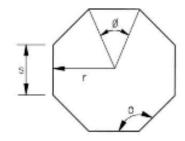
The trapezoid is isosceles if c = d

Parallelogram

$$p = 2 (a + b)$$

$$d_1 = \sqrt{a^2 + b^2 - 2ab(\cos \emptyset)}$$

$$d_2 = \sqrt{a^2 + b^2 + 2ab(\cos \emptyset)}$$


$$d_1^2 + d_2^2 = 2 (a^2 + b^2)$$

$$A = ah = ab(\sin \emptyset)$$

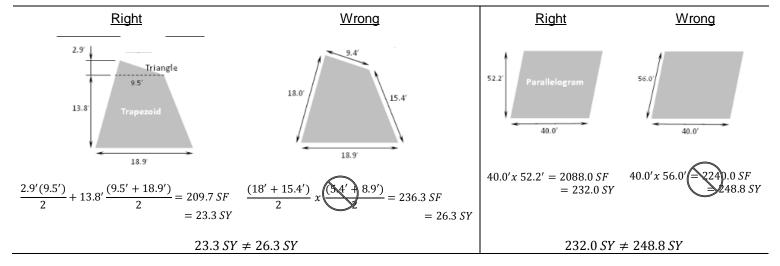
If a = b, the parallelogram is a rhombus

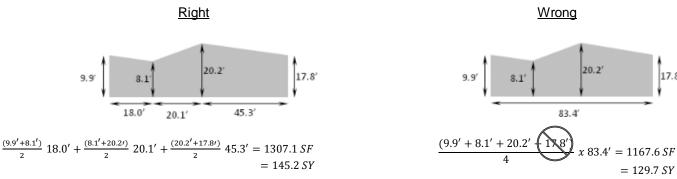
Regular Polygon

(n equal sides)

$$\phi = \frac{2\pi}{n}$$

$$\theta = \frac{\pi (n-2)}{n}$$

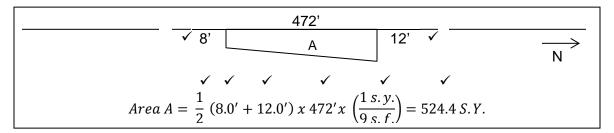

$$p = ns$$


$$s = 2r \left(\tan \left(\frac{\phi}{2} \right) \right)$$

$$A = \frac{1}{2} nsr$$

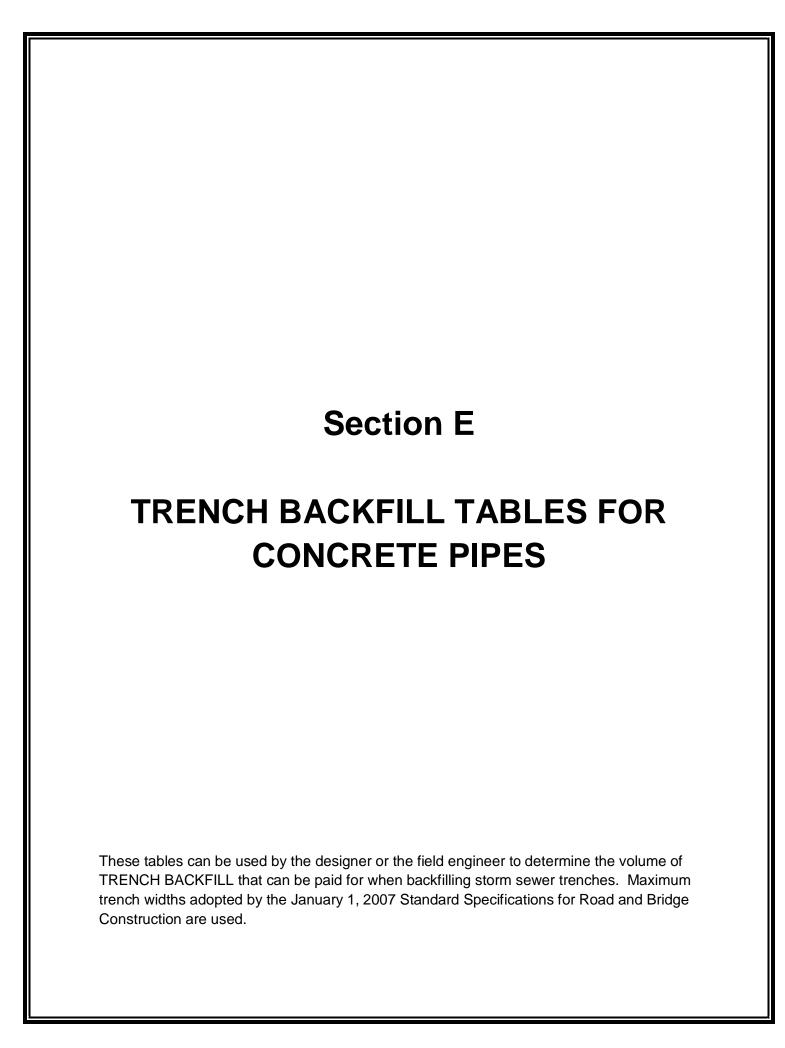
EXAMPLES FOR CALCULATION OF AREA

Break areas into geometric shapes that you can calculate and use the correct formulas!

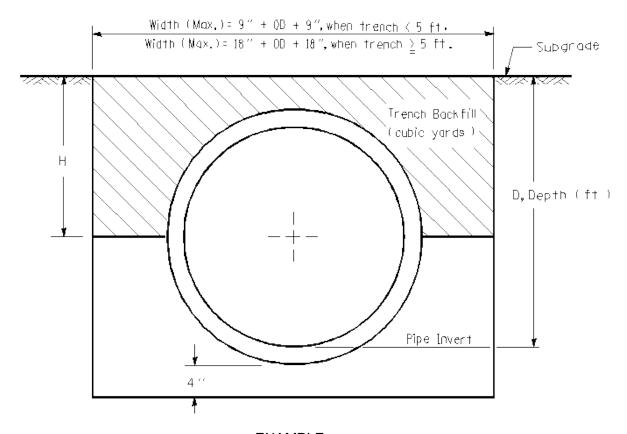


 $145.2 SY \neq 129.7 SY$

RECOMMENDED CHECKING PROCEDURES


The Checker assumes responsibility for all errors made by the Preparer that are not caught by the Checker!

DO NOT ERASE ERRORS! Cross out the original entry with a single line and correct.



- Show what you have checked by making small check marks.
- Checking involves much more than punching numbers into a calculator. The following is a partial list of things that the Checker should be reviewing.
 - All items on any sketches were properly labeled, and the measurements were correctly transferred from the original sketch to the equations.
 - The correct equation was used.
 - The Stationing is correct.
 - The Pay Item, Pay Item Number and Fund Code are correct.
 - All necessary yield checks have been made. You should also note if the yield is within the spec. (If it is out of spec, then an explanation of the factors that would account for the deviation or actions that were taken should be noted.)
 - The "Quantity and Units" column of the IDR matches the calculated value and the pay item requirements.
 - All numbers have been correctly rounded-off, in accordance with Section B of the Documentation Manual.
 - Each pay item is labeled as an "estimate" or a "final measurement". (A final measurement is one that cannot, or will not, be re-measured.)
 - The date, Contractor/Subcontractor, weather, and job stamp information have been completed on the IDR.
 - "Measured by," "Calculated by" and "Checked by" have been initialed and dated.
 - All tonnage and gallon tickets have been initialed, correctly tallied and bound.
 - The "Evidence of Inspection" has been completed in accordance with the PPG, or Section C of the Documentation Manual.

Remember: "Any place a mistake might be made, sooner or later, it will be made!"

TRENCH BACKFILL TABLE FOR CIRCULAR CONCRETE PIPE

EXAMPLE

Given: Pipe = 42" Storm Sewer

Average Depth, D = 6.8 ft. Trench Length = 84.7 ft.

Find: Cubic Yards or TRENCH BACKFILL

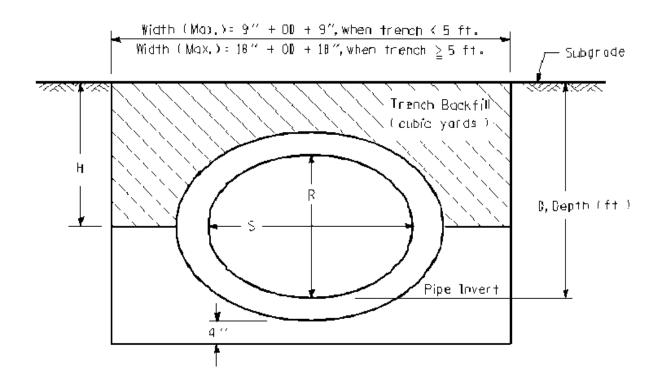
Solution: From table, CY/LF = 1.093

x Trench Length = x 84.7 TRENCH BACKFILL = 92.6 CY

NOTE: If the field engineer measures a width of trench less than the maximum permitted, the values included herein will be of no value. The actual volume of TRENCH BACKFILL used will therefore have to be calculated using the following formula:

$$Cubic\ Yards = \left[(H'x\ W') - \left(\frac{Pipe\ End\ Area}{2} \right) x\ L'x\ 1/27 \right]$$

VOLUME OF TRENCH BACKFILL (CY) PER LINEAR FOOT OF STORM SEWER


Inside Diameter Wall thickness	8" 1.667"	10" 1.833"	12" 2.00"	15" 2.25"	18" 2.50"	21" 2.75"
2.0	0.138	0.136	0.132	0.121	0.105	0.083
2.2	0.156	0.155	0.152	0.143	0.130	0.111
2.4	0.174	0.175	0.173	0.167	0.155	0.138
2.6	0.192	0.194	0.194	0.190	0.180	0.166
2.8	0.210	0.214	0.215	0.213	0.205	0.193
3.0	0.228	0.234	0.236	0.236	0.231	0.220
3.2	0.246	0.253	0.257	0.259	0.256	0.248
3.4	0.264	0.272	0.278	0.282	0.281	0.275
3.6	0.282	0.292	0.299	0.305	0.307	0.303
3.8	0.300	0.311	0.320	0.329	0.332	0.330
4.0	0.319	0.331	0.341	0.352	0.358	0.358
4.2	0.336	0.350	0.362	0.375	0.383	0.385
4.4	0.354	0.370	0.383	0.398	0.408	0.413
4.6	0.610	0.622	0.632	0.642	0.647	0.647
4.8	0.639	0.653	0.664	0.676	0.684	0.686
5.0	0.668	0.683	0.696	0.711	0.720	0.724
5.2	0.698	0.714	0.728	0.745	0.756	0.763
5.4	0.727	0.745	0.760	0.779	0.793	0.801
5.6	0.756	0.776	0.792	0.813	0.829	0.840
5.8	0.785	0.807	0.824	0.848	0.866	0.879
6.0	0.815	0.837	0.856	0.882	0.902	0.918
6.2	0.844	0.867	0.888	0.916	0.938	0.956
6.4	0.873	0.898	0.921	0.950	0.975	0.994
6.6	0.903	0.929	0.953	0.985	1.011	1.033
6.8	0.932	0.959	0.985	1.019	1.048	1.071
7.0	0.961	0.990	1.017	1.053	1.084	1.110
7.2	0.990	1.021	1.049	1.087	1.121	1.149
7.4	1.019	1.051	1.081	1.122	1.157	1.187
7.6	1.049	1.082	1.113	1.156	1.193	1.226
7.8	1.078	1.113	1.145	1.190	1.230	1.264
8.0	1.107	1.143	1.177	1.224	1.266	1.303
8.2	1.136	1.174	1.209	1.259	1.303	1.342
8.4	1.165	1.205	1.241	1.293	1.340	1.380
8.6	1.195	1.235	1.274	1.328	1.376	1.419
8.8	1.224	1.266	1.306	1.362	1.412	1.458
9.0	1.253	1.297	1.338	1.396	1.449	1.496
9.2	1.282	1.327	1.370	1.430	1.485	1.535
9.4	1.311	1.358	1.402	1.465	1.522	1.574
9.6	1.341	1.389	1.435	1.499	1.558	1.612
9.8	1.370	1.419	1.467	1.533	1.594	1.651
10.0	1.399	1.450	1.499	1.568	1.631	1.689
10.2	1.428	1.481	1.531	1.602	1.667	1.728
10.4	1.457	1.511	1.563	1.636	1.704	1.720
10.4	1.487	1.542	1.595	1.671	1.740	1.805
10.8	1.516	1.573	1.627	1.705	1.740	1.844
11.0	1.545	1.603	1.659	1.703	1.776	1.882
11.2	1.545	1.634	1.691		1.813	1.882
11.4				1.773		
	1.603	1.665	1.723	1.808	1.886	1.960
11.6	1.633	1.696	1.755	1.842	1.922	1.998
11.8	1.662	1.726	1.788	1.876	1.958	2.037
For each additional 0.2' depth	10.0000	.0.0007	.0.0004	10.0040	10.0004	.0.0000
	+0.0292	+0.0307	+0.0321	+0.0343	+0.0364	+0.0386

2.4 0.116 2.6 0.146 0.121 2.8 0.175 0.152 0.124 3.0 0.205 0.184 0.158 3.2 0.235 0.216 0.192 0.163 3.4 0.264 0.248 0.226 0.199 0.168 3.6 0.294 0.230 0.260 0.236 0.206 3.8 0.323 0.311 0.294 0.272 0.244 4.0 0.353 0.343 0.328 0.308 0.282 0.216 4.2 0.383 0.375 0.362 0.344 0.321 0.259 4.4 0.412 0.407 0.571 0.548 0.520 0.488 4.6 0.642 0.632 0.616 0.595 0.569 0.606 4.8 0.683 0.674 0.661 0.643 0.619 0.556 5.0 0.723 0.717 0.706 0.690 0.668 0.610 5.2 0.764 0.760 0.751 0.737 0.718 0.663 5.4 0.805 0.803 0.796 0.784 0.767 0.717 5.6 0.846 0.846 0.841 0.831 0.818 0.819 0.856 5.6 0.846 0.846 0.841 0.831 0.816 0.877 5.8 0.886 0.889 0.886 0.879 0.866 0.824 6.0 0.927 0.932 0.931 0.926 0.915 0.878 6.2 0.968 0.975 0.976 0.973 0.966 0.932 6.4 1.009 1.018 1.022 1.020 1.014 0.985 6.6 1.049 1.061 1.067 1.068 1.062 1.162 1.162 1.147 7.2 1.172 1.189 1.202 1.209 1.211 1.200 7.4 1.212 1.232 1.247 1.256 1.261 1.254 7.6 1.253 1.275 1.292 1.304 1.310 1.308 9.0 1.335 1.361 1.385 1.385 1.385 1.359 1.361 8.0 1.335 1.361 1.382 1.391 1.493 1.508 9.8 1.701 1.717 1.718 1.58 1.597 1.598 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.598 1.597 1.597 1.597 1.597 1.598 1.597 1.597 1.597 1.597 1.597 1.597 1.598 1.597 1.597 1.597 1.597 1.598 1.597 1.597 1.598 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.598 1.597 1.597 1.598 1.597 1.597 1.598 1.597 1.597 1.598 1.597 1.597 1.598 1.597 1.597 1.598 1.597 1.597	Inside Diameter Wall thickness	24" 3.00"	27" 3.25"	30" 3.50"	33" 3.75"	36" 4.00"	42" 4.50"
2.8	2.4	0.116					_
3.0 0.205 0.184 0.158 3.2 0.235 0.216 0.192 0.163 3.4 0.264 0.248 0.226 0.199 0.168 3.6 0.294 0.280 0.260 0.236 0.206 3.8 0.323 0.311 0.294 0.272 0.244 4.0 0.353 0.343 0.328 0.308 0.282 0.216 4.2 0.383 0.375 0.362 0.344 0.321 0.259 4.4 0.412 0.407 0.571 0.548 0.520 0.448 4.6 0.642 0.632 0.616 0.595 0.569 0.502 4.8 0.683 0.674 0.661 0.643 0.619 0.556 5.0 0.723 0.717 0.706 0.690 0.688 0.610 5.2 0.764 0.760 0.751 0.737 0.718 0.663 5.4 0.805 0.803 0.796 0.784 0.767 0.717 5.5 0.846 0.846 0.841 0.831 0.816 0.771 5.5 0.846 0.846 0.841 0.831 0.816 0.771 5.8 0.886 0.889 0.886 0.879 0.886 0.829 6.0 0.927 0.932 0.931 0.926 0.915 0.878 6.2 0.968 0.975 0.976 0.973 0.964 0.932 6.4 1.009 1.018 1.002 1.020 1.014 0.985 6.6 1.049 1.061 1.067 1.068 1.063 1.039 6.8 1.090 1.103 1.112 1.115 1.113 1.093 7.0 1.131 1.146 1.157 1.152 1.162 1.147 7.2 1.172 1.189 1.202 1.209 1.211 1.200 7.4 1.212 1.232 1.247 1.256 1.251 1.254 7.6 1.253 1.275 1.292 1.304 1.310 1.308 9.0 1.539 1.576 1.044 1.427 1.445 1.456 1.254 9.8 1.294 1.318 1.337 1.351 1.359 1.361 8.0 1.355 1.361 1.382 1.398 1.409 1.415 9.8 1.294 1.318 1.337 1.351 1.359 1.361 8.0 1.539 1.576 1.608 1.635 1.656 1.684 9.4 1.416 1.447 1.473 1.493 1.508 1.533 9.0 1.539 1.576 1.608 1.537 1.609 1.539 1.00 1.742 1.790 1.833 1.871 1.993 1.994 1.00 1.742 1.790 1.833 1.871 1.993 1.995 1.00 1.742 1.790 1.833 1.871 1.993 1.995 1.00 1.742 1.790 1.833 1.871 1.993 1.993 1.00 1.742 1.790 1.833 1.871 1.993 1.993 1.00 1.742 1.790 1.833 1.878 1.995 1.201 1.00 1.742 1.790 1.833 1.871 1.993 1.951 1.00 1.742 1.790 1.833 1.871 1.993 1.951 1.00 1.742 1.790 1.833 1.871 1.993 1.951 1.00 1.742 1.790 1.833 1.871 1.993 1.951 1.00 1.742 1.790 1.833 1.871 1.993 1.953 1.00 1.742 1.790 1.833 1.871 1.993 1.953 1.00 1.742 1.790 1.833 1.871 1.993 1.953 1.00 1.742 1.790 1.833 1.871 1.993 1.953 1.00 1.742 1.790 1.833 1.871 1.993 1.953 1.00 1.742 1.790 1.833 1.871 1.993 1.953 1.00 1.742 1.790 1.833 1.871 1.993 1.953 1.00 1.742 1.790 1.833 1.871 1.993 1.955 1.00 1.742 1.790 1.833 1.871 1.993 1.955 1.00 1.744 1.747 1.748 1.823	2.6	0.146	0.121				
3.2 0.235 0.216 0.192 0.163 3.4 0.264 0.248 0.226 0.199 0.168 3.6 0.294 0.280 0.260 0.236 0.206 3.8 0.323 0.311 0.294 0.272 0.244 4.0 0.353 0.343 0.328 0.308 0.282 0.216 4.2 0.383 0.375 0.362 0.344 0.321 0.259 4.4 0.412 0.407 0.571 0.548 0.520 0.448 4.6 0.642 0.632 0.616 0.595 0.569 0.502 4.8 0.683 0.674 0.661 0.643 0.619 0.565 5.0 0.723 0.777 0.706 0.690 0.668 0.610 5.2 0.764 0.760 0.751 0.737 0.718 0.663 5.4 0.805 0.803 0.796 0.784 0.767 0.717 5.6 0.846 0.846 0.841 0.831 0.816 0.771 5.8 0.886 0.889 0.889 0.886 0.879 0.866 0.824 6.0 0.927 0.932 0.931 0.926 0.915 0.878 6.2 0.968 0.975 0.976 0.973 0.994 0.932 6.4 1.009 1.018 1.022 1.020 1.014 0.985 6.6 1.049 1.061 1.067 1.068 1.068 1.069 7.0 1.131 1.146 1.157 1.162 1.115 1.113 1.093 7.0 1.131 1.146 1.157 1.162 1.152 1.152 1.202 7.4 1.212 1.232 1.247 1.256 1.261 1.254 7.6 1.253 1.275 1.394 1.398 1.409 1.308 8.4 1.498 1.398 1.397 1.396 1.399 9.0 1.539 1.576 1.608 1.587 1.597 9.94 1.620 1.626 1.698 1.729 1.755 1.791 9.96 1.661 1.747 1.788 1.823 1.836 1.656 1.049 1.061 1.067 1.068 1.063 1.090 1.133 1.142 1.155 1.113 1.093 7.0 1.131 1.146 1.157 1.162 1.152 1.152 1.152 1.74 1.212 1.232 1.247 1.256 1.261 1.254 7.6 1.253 1.275 1.292 1.304 1.310 1.308 7.8 1.294 1.318 1.337 1.351 1.359 1.361 8.0 1.335 1.361 1.382 1.398 1.409 1.416 8.4 1.416 1.447 1.473 1.493 1.508 1.523 8.6 1.457 1.490 1.583 1.583 1.587 1.607 1.630 9.0 1.539 1.576 1.608 1.635 1.582 1.755 1.791 9.6 1.661 1.704 1.743 1.788 1.823 1.854 1.899 1.0.0 1.742 1.790 1.833 1.871 1.903 1.953 1.0.0 1.742 1.790 1.833 1.871 1.903 1.953 1.0.0 1.742 1.790 1.833 1.871 1.903 1.953 1.0.0 1.742 1.790 1.833 1.871 1.903 1.953 1.0.0 1.742 1.790 1.833 1.876 1.804 1.804 1.804 1.0.0 1.742 1.790 1.833 1.876 1.918 1.993 1.953 1.0.0 1.599 1.576 1.608 1.792 1.755 1.791 9.6 1.661 1.704 1.747 1.788 1.823 1.854 1.899 1.0.0 1.742 1.790 1.833 1.876 1.918 1.993 1.953 1.0.2 1.793 1.997 1.998 2.298 2.392 2.298 2.394 2.298 2.398 1.1.6 2.008 2.199 2.148 2.201 2.209 2.2060 1.0.6 1.864 1.999 2.796 2.293 2.299 2.344 2.343 2.209 2.2160 2.219 2.229 2	2.8	0.175	0.152	0.124			
3.4	3.0	0.205	0.184	0.158			
3.6 0.294 0.280 0.260 0.236 0.206 3.8 0.323 0.311 0.294 0.272 0.244 4.0 0.333 0.343 0.328 0.308 0.282 0.216 4.2 0.383 0.343 0.328 0.308 0.282 0.216 4.2 0.383 0.375 0.362 0.344 0.321 0.259 4.4 0.412 0.407 0.571 0.548 0.520 0.448 4.6 0.642 0.632 0.616 0.595 0.569 0.502 4.8 0.683 0.674 0.661 0.643 0.619 0.556 5.0 0.723 0.717 0.706 0.690 0.668 0.610 5.2 0.764 0.760 0.751 0.737 0.718 0.663 5.4 0.806 0.803 0.796 0.784 0.737 0.718 0.663 5.4 0.806 0.803 0.796 0.784 0.767 0.717 5.8 0.886 0.889 0.886 0.879 0.866 0.824 6.0 0.927 0.932 0.931 0.926 0.915 0.878 6.2 0.996 0.997 0.932 0.931 0.926 0.915 0.878 6.2 0.996 0.997 0.908 0.975 0.976 0.973 0.996 0.932 6.4 1.009 1.018 1.022 1.020 1.014 0.985 6.6 1.049 1.061 1.067 1.068 1.063 1.093 6.8 1.090 1.103 1.112 1.115 1.113 1.093 7.0 1.131 1.146 1.157 1.162 1.162 1.147 7.2 1.172 1.189 1.202 1.209 1.211 1.200 7.4 1.212 1.232 1.247 1.256 1.261 1.254 7.6 1.253 1.275 1.292 1.304 1.310 1.361 8.2 1.375 1.361 1.382 1.398 1.409 1.415 8.2 1.375 1.361 1.382 1.398 1.409 1.415 8.2 1.375 1.404 1.427 1.447 1.445 1.458 1.459 1.361 1.557 1.577 8.8 1.498 1.498 1.533 1.563 1.665 1.684 1.620 1.639 9.9 1.661 1.667 1.668 1.059 9.2 1.579 1.578 8.8 1.498 1.533 1.563 1.587 1.459 1.565 1.651 1.557 1.577 8.8 1.498 1.533 1.563 1.587 1.499 1.361 1.599 1.576 1.608 1.557 1.577 8.8 1.498 1.498 1.533 1.563 1.587 1.607 1.539 1.576 1.608 1.623 1.656 1.684 1.620 1.662 1.698 1.729 1.755 1.791 1.608 1.742 1.749 1.833 1.854 1.899 1.00 1.742 1.790 1.833 1.878 1.918 1.953 2.006 1.0.4 1.824 1.876 1.994 1.995 2.002 2.006 1.0.4 1.824 1.876 1.994 2.003 2.158 2.201 2.201 2.201 2.201 1.00 1.004 1.004 1.824 1.876 1.994 2.109 2.201 2.201 2.201 2.201 1.004 1.004 1.824 1.876 1.994 2.201 2.201 2.201 2.201 1.004 1.004 1.824 1.876 1.994 2.201 2.201 2.201 2.201 1.004 1.004 1.824 1.876 1.994 2.201 2.201 2.201 2.201 1.004 1.004 1.824 1.876 1.994 2.203 2.249 2.298 2.330 2.446 2.249 2.238 11.6 2.209 2.298 2.347 2.249 2.298 2.340 1.200 2.2167 11.0 1.996 2.201 2.201 2.201 2.201 2.201 2.201 2.201 2.201 2.201 2.201 2.201 2.201 2.201 2.201 2	3.2	0.235	0.216	0.192	0.163		
3.8	3.4	0.264	0.248	0.226	0.199	0.168	
4.0 0.353 0.343 0.328 0.308 0.282 0.216 4.2 0.383 0.375 0.362 0.344 0.321 0.259 4.4 0.412 0.407 0.571 0.548 0.520 0.448 4.6 0.642 0.632 0.616 0.595 0.569 0.502 4.8 0.683 0.674 0.661 0.643 0.619 0.556 0.500 0.723 0.717 0.706 0.690 0.668 0.610 0.555 0.569 0.502 0.704 0.661 0.643 0.619 0.556 0.500 0.723 0.717 0.706 0.690 0.668 0.610 0.663 0.610 0.61	3.6	0.294	0.280	0.260	0.236	0.206	
4.2 0.383 0.375 0.362 0.344 0.321 0.259 4.4 0.412 0.407 0.571 0.548 0.520 0.448 4.6 0.642 0.632 0.616 0.595 0.569 0.502 4.8 0.683 0.674 0.661 0.643 0.619 0.556 5.0 0.723 0.717 0.706 0.690 0.668 0.610 5.2 0.764 0.760 0.751 0.737 0.718 0.663 5.4 0.805 0.803 0.796 0.784 0.767 0.717 5.6 0.846 0.846 0.841 0.831 0.916 0.771 5.8 0.886 0.889 0.886 0.879 0.866 0.824 6.0 0.927 0.932 0.931 0.926 0.915 0.878 6.2 0.968 0.975 0.976 0.973 0.964 0.982 6.6 1.049 1.061 <t< td=""><td>3.8</td><td>0.323</td><td>0.311</td><td>0.294</td><td>0.272</td><td>0.244</td><td></td></t<>	3.8	0.323	0.311	0.294	0.272	0.244	
4.4 0.412 0.407 0.571 0.548 0.520 0.448 4.6 0.642 0.632 0.616 0.595 0.569 0.502 4.8 0.661 0.642 0.632 0.616 0.595 0.569 0.502 4.8 0.663 0.674 0.661 0.643 0.619 0.556 5.0 0.723 0.717 0.706 0.669 0.668 0.610 5.2 0.764 0.760 0.751 0.737 0.718 0.663 0.663 0.52 0.764 0.760 0.751 0.737 0.718 0.663 0.663 0.690 0.668 0.610 5.2 0.764 0.760 0.751 0.737 0.718 0.663 0.663 0.796 0.784 0.767 0.717 5.6 0.846 0.846 0.844 0.831 0.816 0.771 5.8 0.886 0.889 0.886 0.879 0.866 0.824 0.927 0.932 0.931 0.926 0.915 0.878 0.27 0.932 0.931 0.926 0.915 0.978	4.0	0.353	0.343	0.328	0.308	0.282	0.216
4.6 0.642 0.632 0.616 0.595 0.569 0.502 4.8 0.663 0.674 0.661 0.643 0.619 0.556 5.0 0.723 0.717 0.706 0.690 0.668 0.610 5.2 0.764 0.760 0.751 0.737 0.718 0.663 5.4 0.805 0.803 0.796 0.784 0.767 0.717 5.6 0.846 0.846 0.841 0.831 0.816 0.771 5.8 0.886 0.889 0.886 0.879 0.866 0.824 6.0 0.927 0.932 0.931 0.926 0.915 0.878 6.2 0.968 0.975 0.973 0.964 0.932 6.4 1.009 1.018 1.022 1.020 1.014 0.985 6.6 1.049 1.061 1.067 1.068 1.063 1.039 7.0 1.131 1.146 1.157 <t< td=""><td>4.2</td><td>0.383</td><td>0.375</td><td>0.362</td><td>0.344</td><td>0.321</td><td>0.259</td></t<>	4.2	0.383	0.375	0.362	0.344	0.321	0.259
4.8 0.683 0.674 0.661 0.643 0.619 0.556 5.0 0.723 0.717 0.706 0.690 0.688 0.610 5.2 0.764 0.760 0.751 0.737 0.718 0.663 5.4 0.805 0.803 0.796 0.784 0.767 0.717 5.6 0.846 0.846 0.841 0.831 0.816 0.771 5.8 0.886 0.889 0.886 0.879 0.866 0.824 6.0 0.927 0.932 0.931 0.926 0.915 0.878 6.2 0.988 0.975 0.976 0.973 0.964 0.932 6.4 1.009 1.018 1.022 1.020 1.014 0.985 6.6 1.049 1.061 1.067 1.068 1.039 7.0 1.131 1.146 1.157 1.162 1.141 7.2 1.172 1.189 1.202 1.209 <t< td=""><td>4.4</td><td>0.412</td><td>0.407</td><td>0.571</td><td>0.548</td><td>0.520</td><td>0.448</td></t<>	4.4	0.412	0.407	0.571	0.548	0.520	0.448
5.0 0.723 0.717 0.706 0.690 0.668 0.610 5.2 0.764 0.760 0.751 0.737 0.718 0.663 5.4 0.805 0.803 0.796 0.774 0.717 5.6 0.846 0.846 0.841 0.831 0.816 0.771 5.8 0.886 0.889 0.886 0.879 0.866 0.824 6.0 0.927 0.932 0.931 0.926 0.915 0.878 6.2 0.968 0.975 0.976 0.973 0.964 0.932 6.4 1.009 1.018 1.022 1.020 1.014 0.985 6.6 1.049 1.061 1.067 1.068 1.063 1.039 6.8 1.090 1.103 1.112 1.115 1.113 1.109 7.0 1.131 1.146 1.157 1.162 1.162 1.47 7.2 1.172 1.189 1.202 <td< td=""><td>4.6</td><td>0.642</td><td>0.632</td><td>0.616</td><td>0.595</td><td>0.569</td><td>0.502</td></td<>	4.6	0.642	0.632	0.616	0.595	0.569	0.502
5.2 0.764 0.760 0.751 0.737 0.718 0.663 5.4 0.805 0.803 0.796 0.784 0.767 0.717 5.6 0.846 0.846 0.841 0.831 0.816 0.771 5.8 0.886 0.889 0.886 0.879 0.866 0.824 6.0 0.927 0.932 0.931 0.926 0.915 0.878 6.2 0.968 0.975 0.976 0.973 0.964 0.932 6.4 1.009 1.018 1.022 1.020 1.014 0.985 6.6 1.049 1.061 1.067 1.068 1.663 1.039 6.8 1.090 1.103 1.112 1.115 1.113 1.093 7.0 1.131 1.146 1.157 1.162 1.162 1.147 7.2 1.172 1.189 1.202 1.209 1.211 1.200 7.4 1.253 1.275 <t< td=""><td>4.8</td><td>0.683</td><td>0.674</td><td>0.661</td><td>0.643</td><td>0.619</td><td>0.556</td></t<>	4.8	0.683	0.674	0.661	0.643	0.619	0.556
5.4 0.805 0.803 0.796 0.784 0.767 0.717 5.6 0.846 0.846 0.841 0.831 0.816 0.771 5.8 0.886 0.889 0.886 0.879 0.966 0.824 6.0 0.927 0.932 0.931 0.926 0.915 0.878 6.2 0.968 0.975 0.976 0.973 0.964 0.932 6.4 1.009 1.018 1.022 1.020 1.014 0.985 6.6 1.049 1.061 1.067 1.068 1.093 6.8 1.090 1.103 1.112 1.115 1.113 1.093 7.0 1.131 1.146 1.157 1.162 1.162 1.147 7.2 1.172 1.189 1.209 1.211 1.200 7.4 1.212 1.232 1.247 1.256 1.261 1.254 7.6 1.253 1.275 1.292 1.304 <t< td=""><td>5.0</td><td>0.723</td><td>0.717</td><td>0.706</td><td>0.690</td><td>0.668</td><td>0.610</td></t<>	5.0	0.723	0.717	0.706	0.690	0.668	0.610
5.6 0.846 0.846 0.841 0.831 0.816 0.771 5.8 0.886 0.889 0.886 0.879 0.866 0.824 6.0 0.927 0.932 0.931 0.926 0.915 0.878 6.2 0.968 0.975 0.976 0.973 0.964 0.932 6.4 1.009 1.018 1.022 1.020 1.014 0.985 6.6 1.049 1.061 1.067 1.068 1.063 1.039 6.8 1.090 1.103 1.112 1.115 1.113 1.093 7.0 1.131 1.146 1.157 1.162 1.162 1.147 7.2 1.172 1.189 1.202 1.209 1.211 1.254 7.6 1.253 1.275 1.292 1.304 1.310 1.308 7.8 1.294 1.318 1.337 1.351 1.359 1.361 8.0 1.335 1.361 <t< td=""><td>5.2</td><td>0.764</td><td>0.760</td><td>0.751</td><td>0.737</td><td>0.718</td><td>0.663</td></t<>	5.2	0.764	0.760	0.751	0.737	0.718	0.663
5.6 0.846 0.846 0.841 0.831 0.816 0.771 5.8 0.886 0.889 0.886 0.879 0.866 0.824 6.0 0.927 0.932 0.931 0.926 0.964 0.932 6.4 1.009 1.018 1.022 1.020 1.014 0.985 6.6 1.049 1.061 1.067 1.068 1.063 1.039 6.8 1.090 1.103 1.112 1.115 1.113 1.093 7.0 1.131 1.146 1.157 1.162 1.162 1.147 7.2 1.172 1.189 1.202 1.209 1.211 1.200 7.4 1.212 1.232 1.209 1.211 1.254 7.6 1.253 1.275 1.292 1.304 1.310 1.308 7.8 1.294 1.318 1.337 1.351 1.359 1.361 8.0 1.335 1.361 1.382 <t< td=""><td>5.4</td><td>0.805</td><td>0.803</td><td>0.796</td><td>0.784</td><td>0.767</td><td>0.717</td></t<>	5.4	0.805	0.803	0.796	0.784	0.767	0.717
6.0 0.927 0.932 0.931 0.926 0.915 0.878 6.2 0.968 0.975 0.976 0.973 0.964 0.932 6.4 1.009 1.018 1.022 1.020 1.014 0.985 6.6 1.049 1.061 1.067 1.068 1.063 1.039 6.8 1.090 1.103 1.112 1.115 1.113 1.093 7.0 1.131 1.146 1.157 1.162 1.162 1.147 7.2 1.172 1.189 1.202 1.209 1.201 1.201 1.200 7.4 1.212 1.232 1.247 1.256 1.261 1.254 7.6 1.253 1.275 1.292 1.304 1.310 1.308 7.8 1.294 1.318 1.337 1.351 1.359 1.361 8.0 1.335 1.361 1.382 1.398 1.409 1.415 8.2 1.375 1.404 1.427 1.445 1.458 1.469 8.4 1.416 1.447 1.473 1.493 1.508 1.523 8.6 1.494 1.416 1.447 1.473 1.493 1.508 1.523 8.6 1.494 1.579 1.577 8.8 1.498 1.593 1.563 1.587 1.607 1.630 9.0 1.539 1.576 1.608 1.635 1.665 1.684 9.2 1.579 1.619 1.663 1.682 1.706 1.738 9.4 1.620 1.662 1.698 1.729 1.755 1.791 9.6 1.661 1.704 1.743 1.776 1.804 1.845 9.8 1.701 1.742 1.790 1.833 1.871 1.903 1.953 10.2 1.783 1.833 1.871 1.903 1.953 10.2 1.783 1.833 1.871 1.903 1.953 10.2 1.783 1.833 1.878 1.918 1.953 2.006 10.4 1.824 1.790 1.833 1.878 1.918 1.953 2.006 10.4 1.824 1.995 1.962 2.013 2.060 2.100 2.167 11.0 1.946 2.005 2.058 2.107 2.150 2.221 11.2 1.987 2.048 2.103 2.249 2.298 2.382 11.8 2.109 2.176 2.239 2.296 2.347 2.436 For each additional 0.2' depth:	5.6	0.846		0.841	0.831	0.816	0.771
6.0 0.927 0.932 0.931 0.926 0.915 0.878 6.2 0.968 0.975 0.976 0.973 0.964 0.932 6.4 1.009 1.018 1.022 1.020 1.014 0.985 6.6 1.049 1.061 1.067 1.068 1.063 1.039 6.8 1.090 1.103 1.112 1.115 1.113 1.093 7.0 1.131 1.146 1.157 1.162 1.162 1.147 7.2 1.172 1.189 1.202 1.209 1.201 1.201 1.200 7.4 1.212 1.232 1.247 1.256 1.261 1.254 7.6 1.253 1.275 1.292 1.304 1.310 1.308 7.8 1.294 1.318 1.337 1.351 1.359 1.361 8.0 1.335 1.361 1.382 1.398 1.409 1.415 8.2 1.375 1.404 1.427 1.445 1.458 1.469 8.4 1.416 1.447 1.473 1.493 1.508 1.523 8.6 1.494 1.416 1.447 1.473 1.493 1.508 1.523 8.6 1.494 1.579 1.577 8.8 1.498 1.593 1.563 1.587 1.607 1.630 9.0 1.539 1.576 1.608 1.635 1.665 1.684 9.2 1.579 1.619 1.663 1.682 1.706 1.738 9.4 1.620 1.662 1.698 1.729 1.755 1.791 9.6 1.661 1.704 1.743 1.776 1.804 1.845 9.8 1.701 1.742 1.790 1.833 1.871 1.903 1.953 10.2 1.783 1.833 1.871 1.903 1.953 10.2 1.783 1.833 1.871 1.903 1.953 10.2 1.783 1.833 1.878 1.918 1.953 2.006 10.4 1.824 1.790 1.833 1.878 1.918 1.953 2.006 10.4 1.824 1.995 1.962 2.013 2.060 2.100 2.167 11.0 1.946 2.005 2.058 2.107 2.150 2.221 11.2 1.987 2.048 2.103 2.249 2.298 2.382 11.8 2.109 2.176 2.239 2.296 2.347 2.436 For each additional 0.2' depth:					0.879	0.866	
6.2 0.968 0.975 0.976 0.973 0.964 0.932 6.4 1.009 1.018 1.022 1.020 1.014 0.985 6.6 1.049 1.061 1.067 1.068 1.063 1.039 6.8 1.090 1.103 1.112 1.115 1.113 1.093 7.0 1.311 1.146 1.157 1.162 1.162 1.147 7.2 1.172 1.189 1.202 1.209 1.211 1.200 7.4 1.212 1.232 1.247 1.256 1.261 1.254 7.6 1.253 1.275 1.292 1.304 1.310 1.308 7.8 1.294 1.318 1.337 1.351 1.359 1.361 8.0 1.335 1.361 1.382 1.398 1.409 1.415 8.2 1.375 1.404 1.427 1.445 1.458 1.469 8.4 1.416 1.447 1.473 1.493 1.508 1.523 8.6 1.457 1.490 1.518 1.540 1.557 1.577 8.8 8.1 1.494 1.539 1.518 1.530 1.561 1.557 1.577 8.8 8.1 1.498 1.533 1.563 1.563 1.563 1.656 1.684 9.2 1.579 1.619 1.662 1.698 1.729 1.755 1.791 9.6 1.661 1.704 1.747 1.748 1.823 1.854 1.899 1.00 1.742 1.790 1.833 1.871 1.903 1.953 1.006 1.00 1.742 1.790 1.833 1.871 1.903 1.953 1.006 1.00							
6.6 1.049 1.061 1.067 1.068 1.063 1.039 6.8 1.090 1.103 1.112 1.115 1.113 1.093 7.0 1.131 1.146 1.157 1.162 1.162 1.147 7.2 1.131 1.146 1.157 1.162 1.162 1.147 7.2 1.172 1.189 1.202 1.209 1.211 1.200 7.4 1.212 1.232 1.247 1.256 1.261 1.254 7.6 1.253 1.275 1.292 1.304 1.310 1.308 7.8 1.294 1.318 1.337 1.351 1.359 1.361 8.0 1.335 1.361 1.382 1.398 1.409 1.415 8.2 1.375 1.404 1.427 1.445 1.458 1.469 8.4 1.416 1.447 1.473 1.493 1.508 1.523 8.6 1.457 1.490 1.518 1.540 1.557 1.577 8.8 8.1.294 1.318 1.533 1.563 1.563 1.567 1.607 1.630 9.0 1.539 1.576 1.608 1.635 1.666 1.684 9.2 1.579 1.619 1.653 1.682 1.706 1.738 9.4 1.620 1.662 1.698 1.704 1.743 1.776 1.804 1.845 9.8 1.701 1.747 1.788 1.823 1.854 1.899 10.0 1.742 1.790 1.833 1.871 1.903 1.953 10.2 1.783 1.834 1.894 1.919 1.968 2.012 2.056 1.066 1.066 1.864 1.919 1.968 2.012 2.056 1.066 1.066 1.864 1.919 1.968 2.012 2.051 2.114 10.8 1.905 1.962 2.013 2.060 2.100 2.167 11.0 1.946 2.005 2.058 2.107 2.150 2.221 1.16 2.008 2.133 2.193 2.249 2.298 2.382 11.8 2.109 2.176 2.239 2.296 2.347 2.436 12.0 2.150 2.219 2.284 2.343 2.397 2.490 12.2 2.191 2.262 2.329 2.390 2.446 2.543 For each additional 0.2' depth:							
6.6	6.4	1.009	1.018	1.022	1.020	1.014	0.985
7.0 1.131 1.146 1.157 1.162 1.162 1.147 7.2 1.172 1.189 1.202 1.209 1.211 1.200 7.4 1.212 1.232 1.247 1.256 1.261 1.254 7.6 1.253 1.275 1.292 1.304 1.310 1.308 7.8 1.294 1.318 1.337 1.351 1.359 1.361 8.0 1.335 1.361 1.382 1.398 1.409 1.415 8.2 1.375 1.404 1.427 1.445 1.458 1.469 8.4 1.416 1.447 1.473 1.493 1.508 1.523 8.6 1.457 1.490 1.518 1.540 1.557 1.577 8.8 1.498 1.533 1.563 1.587 1.607 1.630 9.0 1.539 1.576 1.608 1.635 1.682 1.706 1.738 9.4 1.620 1.662 1.698 1.729 1.755 1.791 9.6 1.661 1.704 1.743 1.776 1.804 1.845 9.8 1.701 1.747 1.788 1.823 1.854 1.899 10.0 1.742 1.790 1.833 1.871 1.903 1.953 10.2 1.783 1.833 1.878 1.918 1.953 2.006 10.4 1.824 1.876 1.924 1.965 2.002 2.060 10.6 1.864 1.919 1.968 2.012 2.051 2.114 10.8 1.905 1.962 2.013 2.060 2.100 2.167 11.0 1.946 2.005 2.058 2.107 2.150 2.221 11.2 1.987 2.048 2.103 2.154 2.199 2.275 11.4 2.028 2.091 2.148 2.201 2.249 2.328 11.6 2.068 2.133 2.193 2.249 2.298 2.382 11.8 2.109 2.176 2.239 2.296 2.347 2.436 12.0 2.150 2.219 2.284 2.343 2.397 2.490 12.2 E.150 2.219 2.284 2.343 2.397 2.490 12.2 E.160 2.219 2.284 2.343 2.397 2.490 12.2 E.160 2.219 2.284 2.343 2.397 2.490	6.6	1.049	1.061	1.067		1.063	1.039
7.0 1.131 1.146 1.157 1.162 1.162 1.147 7.2 1.172 1.189 1.202 1.209 1.211 1.200 7.4 1.212 1.232 1.247 1.256 1.261 1.254 7.6 1.253 1.275 1.292 1.304 1.310 1.308 7.8 1.294 1.318 1.337 1.351 1.359 1.361 8.0 1.335 1.361 1.382 1.398 1.409 1.415 8.2 1.375 1.404 1.427 1.445 1.458 1.469 8.4 1.416 1.447 1.473 1.493 1.508 1.523 8.6 1.457 1.490 1.518 1.540 1.557 1.577 8.8 1.498 1.533 1.563 1.587 1.607 1.630 9.0 1.539 1.576 1.608 1.635 1.682 1.706 1.738 9.4 1.620 1.662 1.698 1.729 1.755 1.791 9.6 1.661 1.704 1.743 1.776 1.804 1.845 9.8 1.701 1.747 1.788 1.823 1.854 1.899 10.0 1.742 1.790 1.833 1.871 1.903 1.953 10.2 1.783 1.833 1.878 1.918 1.953 2.006 10.4 1.824 1.876 1.924 1.965 2.002 2.060 10.6 1.864 1.919 1.968 2.012 2.051 2.114 10.8 1.905 1.962 2.013 2.060 2.100 2.167 11.0 1.946 2.005 2.058 2.107 2.150 2.221 11.2 1.987 2.048 2.103 2.154 2.199 2.275 11.4 2.028 2.091 2.148 2.201 2.249 2.328 11.6 2.068 2.133 2.193 2.249 2.298 2.382 11.8 2.109 2.176 2.239 2.296 2.347 2.436 12.0 2.150 2.219 2.284 2.343 2.397 2.490 12.2 E.150 2.219 2.284 2.343 2.397 2.490 12.2 E.160 2.219 2.284 2.343 2.397 2.490 12.2 E.160 2.219 2.284 2.343 2.397 2.490							
7.2 1.172 1.189 1.202 1.209 1.211 1.200 7.4 1.212 1.232 1.247 1.256 1.261 1.254 7.6 1.253 1.275 1.292 1.304 1.310 1.308 7.8 1.294 1.318 1.337 1.351 1.359 1.361 8.0 1.335 1.361 1.382 1.398 1.409 1.415 8.2 1.375 1.404 1.427 1.445 1.458 1.469 8.4 1.416 1.447 1.473 1.493 1.508 1.523 8.6 1.457 1.490 1.518 1.540 1.557 1.577 8.8 1.498 1.533 1.563 1.587 1.607 1.630 9.0 1.539 1.576 1.608 1.635 1.656 1.684 9.2 1.579 1.619 1.653 1.682 1.706 1.738 9.4 1.620 1.662 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
7.4 1.212 1.232 1.247 1.256 1.261 1.254 7.6 1.253 1.275 1.292 1.304 1.310 1.308 7.8 1.294 1.318 1.337 1.351 1.359 1.361 8.0 1.335 1.361 1.382 1.398 1.409 1.415 8.2 1.375 1.404 1.427 1.445 1.458 1.469 8.4 1.416 1.447 1.473 1.493 1.508 1.523 8.6 1.457 1.490 1.518 1.540 1.557 1.577 8.8 1.498 1.533 1.563 1.687 1.607 1.630 9.0 1.539 1.576 1.608 1.635 1.656 1.684 9.2 1.579 1.619 1.653 1.682 1.706 1.738 9.4 1.620 1.662 1.698 1.729 1.755 1.791 9.6 1.661 1.704 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
7.8 1.294 1.318 1.337 1.351 1.359 1.361 8.0 1.335 1.361 1.382 1.398 1.409 1.415 8.2 1.375 1.404 1.427 1.445 1.458 1.469 8.4 1.416 1.447 1.473 1.493 1.508 1.523 8.6 1.457 1.490 1.518 1.540 1.557 1.577 8.8 1.498 1.533 1.563 1.587 1.607 1.630 9.0 1.539 1.576 1.608 1.635 1.656 1.684 9.2 1.579 1.619 1.653 1.682 1.706 1.738 9.4 1.620 1.662 1.698 1.729 1.755 1.791 9.6 1.661 1.704 1.743 1.776 1.804 1.845 9.8 1.701 1.747 1.788 1.823 1.854 1.899 10.0 1.742 1.790 <	7.4	1.212	1.232	1.247	1.256	1.261	1.254
7.8 1.294 1.318 1.337 1.351 1.359 1.361 8.0 1.335 1.361 1.382 1.398 1.409 1.415 8.2 1.375 1.404 1.427 1.445 1.458 1.469 8.4 1.416 1.447 1.473 1.493 1.508 1.523 8.6 1.457 1.490 1.518 1.540 1.557 1.577 8.8 1.498 1.533 1.563 1.587 1.607 1.630 9.0 1.539 1.576 1.608 1.635 1.656 1.684 9.2 1.579 1.619 1.653 1.682 1.706 1.738 9.4 1.620 1.662 1.698 1.729 1.755 1.791 9.6 1.661 1.704 1.743 1.776 1.804 1.845 9.8 1.701 1.747 1.788 1.823 1.854 1.899 10.0 1.742 1.790 <							
8.2 1.375 1.404 1.427 1.445 1.458 1.469 8.4 1.416 1.447 1.473 1.493 1.508 1.523 8.6 1.457 1.490 1.518 1.540 1.557 1.577 8.8 1.498 1.533 1.563 1.587 1.607 1.630 9.0 1.5399 1.576 1.608 1.635 1.656 1.684 9.2 1.579 1.619 1.653 1.682 1.706 1.738 9.4 1.620 1.662 1.698 1.729 1.755 1.791 9.6 1.661 1.704 1.743 1.776 1.804 1.845 9.8 1.701 1.747 1.788 1.823 1.854 1.899 10.0 1.742 1.790 1.833 1.871 1.903 1.953 10.2 1.783 1.833 1.878 1.918 1.953 2.006 10.4 1.824 1.876 1.924 1.965 2.002 2.060 10.6 1.864 1.	7.8	1.294	1.318	1.337	1.351	1.359	1.361
8.4 1.416 1.447 1.473 1.493 1.508 1.523 8.6 1.457 1.490 1.518 1.540 1.557 1.577 8.8 1.498 1.533 1.563 1.587 1.607 1.630 9.0 1.539 1.576 1.608 1.635 1.656 1.684 9.2 1.579 1.619 1.653 1.682 1.706 1.738 9.4 1.620 1.662 1.698 1.729 1.755 1.791 9.6 1.661 1.704 1.743 1.776 1.804 1.845 9.8 1.701 1.747 1.788 1.823 1.854 1.899 10.0 1.742 1.790 1.833 1.871 1.903 1.953 10.2 1.783 1.833 1.878 1.918 1.953 2.006 10.4 1.824 1.876 1.924 1.965 2.002 2.060 10.6 1.864 1.919 1.968 2.012 2.051 2.114 10.8 1.905 1.	8.0	1.335	1.361	1.382	1.398	1.409	1.415
8.6 1.457 1.490 1.518 1.540 1.557 1.577 8.8 1.498 1.533 1.563 1.587 1.607 1.630 9.0 1.539 1.576 1.608 1.635 1.656 1.684 9.2 1.579 1.619 1.653 1.682 1.706 1.738 9.4 1.620 1.662 1.698 1.729 1.755 1.791 9.6 1.661 1.704 1.743 1.776 1.804 1.845 9.8 1.701 1.747 1.788 1.823 1.854 1.899 10.0 1.742 1.790 1.833 1.871 1.903 1.953 10.2 1.783 1.833 1.878 1.918 1.953 2.060 10.4 1.824 1.876 1.924 1.965 2.002 2.060 10.6 1.864 1.919 1.968 2.012 2.051 2.114 10.8 1.905 1.962 2.013 2.060 2.100 2.167 11.0 1.946 2	8.2	1.375	1.404	1.427	1.445	1.458	1.469
8.8 1.498 1.533 1.563 1.587 1.607 1.630 9.0 1.539 1.576 1.608 1.635 1.656 1.684 9.2 1.579 1.619 1.653 1.682 1.706 1.738 9.4 1.620 1.662 1.698 1.729 1.755 1.791 9.6 1.661 1.704 1.743 1.776 1.804 1.845 9.8 1.701 1.747 1.788 1.823 1.854 1.899 10.0 1.742 1.790 1.833 1.871 1.903 1.953 10.2 1.783 1.833 1.878 1.918 1.953 2.006 10.4 1.824 1.876 1.924 1.965 2.002 2.060 10.6 1.864 1.919 1.968 2.012 2.051 2.114 10.8 1.905 1.962 2.013 2.060 2.100 2.167 11.0 1.946 2.005 2.058 2.107 2.150 2.221 11.4 2.028							
8.8 1.498 1.533 1.563 1.587 1.607 1.630 9.0 1.539 1.576 1.608 1.635 1.656 1.684 9.2 1.579 1.619 1.653 1.682 1.706 1.738 9.4 1.620 1.662 1.698 1.729 1.755 1.791 9.6 1.661 1.704 1.743 1.776 1.804 1.845 9.8 1.701 1.747 1.788 1.823 1.854 1.899 10.0 1.742 1.790 1.833 1.871 1.903 1.953 10.2 1.783 1.833 1.878 1.918 1.953 2.006 10.4 1.824 1.876 1.924 1.965 2.002 2.060 10.6 1.864 1.919 1.968 2.012 2.051 2.114 10.8 1.905 1.962 2.013 2.060 2.100 2.167 11.0 1.946 2.005 2.058 2.107 2.150 2.221 11.4 2.028	8.6	1.457	1.490	1.518	1.540	1.557	1.577
9.2 1.579 1.619 1.653 1.682 1.706 1.738 9.4 1.620 1.662 1.698 1.729 1.755 1.791 9.6 1.661 1.704 1.743 1.776 1.804 1.845 9.8 1.701 1.747 1.788 1.823 1.854 1.899 10.0 1.742 1.790 1.833 1.871 1.903 1.953 10.2 1.783 1.833 1.878 1.918 1.953 2.006 10.4 1.824 1.876 1.924 1.965 2.002 2.060 10.6 1.864 1.919 1.968 2.012 2.051 2.114 10.8 1.905 1.962 2.013 2.060 2.100 2.167 11.0 1.946 2.005 2.058 2.107 2.150 2.221 11.2 1.987 2.048 2.103 2.154 2.199 2.275 11.4 2.028 2.091 2.148 2.201 2.249 2.328 11.6 2.068 <t< td=""><td></td><td>1.498</td><td>1.533</td><td></td><td></td><td></td><td>1.630</td></t<>		1.498	1.533				1.630
9.2 1.579 1.619 1.653 1.682 1.706 1.738 9.4 1.620 1.662 1.698 1.729 1.755 1.791 9.6 1.661 1.704 1.743 1.776 1.804 1.845 9.8 1.701 1.747 1.788 1.823 1.854 1.899 10.0 1.742 1.790 1.833 1.871 1.903 1.953 10.2 1.783 1.833 1.878 1.918 1.953 2.006 10.4 1.824 1.876 1.924 1.965 2.002 2.060 10.6 1.864 1.919 1.968 2.012 2.051 2.114 10.8 1.905 1.962 2.013 2.060 2.100 2.167 11.0 1.946 2.005 2.058 2.107 2.150 2.221 11.2 1.987 2.048 2.103 2.154 2.199 2.275 11.4 2.028 2.091 2.148 2.201 2.249 2.328 11.6 2.068 2.133 2.193 2.249 2.298 2.382 11.8 2.109 2.176 2.239 2.296 2.347 2.436 12.0 2.150 2.219 2.284 2.343 2.397 2.490 12.2 2.191 2.262 2.329 2.390 2.446 2.543 For each additional 0.2' depth:	9.0	1.539	1.576	1.608	1.635	1.656	1.684
9.6 1.661 1.704 1.743 1.776 1.804 1.845 9.8 1.701 1.747 1.788 1.823 1.854 1.899 10.0 1.742 1.790 1.833 1.871 1.903 1.953 10.2 1.783 1.833 1.878 1.918 1.953 2.006 10.4 1.824 1.876 1.924 1.965 2.002 2.060 10.6 1.864 1.919 1.968 2.012 2.051 2.114 10.8 1.905 1.962 2.013 2.060 2.100 2.167 11.0 1.946 2.005 2.058 2.107 2.150 2.221 11.2 1.987 2.048 2.103 2.154 2.199 2.275 11.4 2.028 2.091 2.148 2.201 2.249 2.328 11.6 2.068 2.133 2.193 2.249 2.298 2.382 11.8 2.109 2.176 2.239 2.296 2.347 2.436 12.0 2.150	9.2	1.579		1.653			
9.6 1.661 1.704 1.743 1.776 1.804 1.845 9.8 1.701 1.747 1.788 1.823 1.854 1.899 10.0 1.742 1.790 1.833 1.871 1.903 1.953 10.2 1.783 1.833 1.878 1.918 1.953 2.006 10.4 1.824 1.876 1.924 1.965 2.002 2.060 10.6 1.864 1.919 1.968 2.012 2.051 2.114 10.8 1.905 1.962 2.013 2.060 2.100 2.167 11.0 1.946 2.005 2.058 2.107 2.150 2.221 11.2 1.987 2.048 2.103 2.154 2.199 2.275 11.4 2.028 2.091 2.148 2.201 2.249 2.328 11.6 2.068 2.133 2.193 2.249 2.298 2.382 11.8 2.109 2.176 2.239 2.296 2.347 2.436 12.0 2.150	9.4	1.620	1.662	1.698	1.729	1.755	1.791
9.8 1.701 1.747 1.788 1.823 1.854 1.899 10.0 1.742 1.790 1.833 1.871 1.903 1.953 10.2 1.783 1.833 1.878 1.918 1.953 2.006 10.4 1.824 1.876 1.924 1.965 2.002 2.060 10.6 1.864 1.919 1.968 2.012 2.051 2.114 10.8 1.905 1.962 2.013 2.060 2.100 2.167 11.0 1.946 2.005 2.058 2.107 2.150 2.221 11.2 1.987 2.048 2.103 2.154 2.199 2.275 11.4 2.028 2.091 2.148 2.201 2.249 2.328 11.6 2.068 2.133 2.193 2.249 2.298 2.382 11.8 2.109 2.176 2.239 2.296 2.347 2.436 12.0 2.150 2.219 2.284 2.343 2.397 2.490 12.2 2.191	9.6	1.661	1.704		1.776	1.804	
10.0 1.742 1.790 1.833 1.871 1.903 1.953 10.2 1.783 1.833 1.878 1.918 1.953 2.006 10.4 1.824 1.876 1.924 1.965 2.002 2.060 10.6 1.864 1.919 1.968 2.012 2.051 2.114 10.8 1.905 1.962 2.013 2.060 2.100 2.167 11.0 1.946 2.005 2.058 2.107 2.150 2.221 11.2 1.987 2.048 2.103 2.154 2.199 2.275 11.4 2.028 2.091 2.148 2.201 2.249 2.328 11.6 2.068 2.133 2.193 2.249 2.298 2.382 11.8 2.109 2.176 2.239 2.296 2.347 2.436 12.0 2.150 2.219 2.284 2.343 2.397 2.490 12.2 2.191 2.262 2.329 2.390 2.446 2.543 For each addit	9.8		1.747	1.788			
10.2 1.783 1.833 1.878 1.918 1.953 2.006 10.4 1.824 1.876 1.924 1.965 2.002 2.060 10.6 1.864 1.919 1.968 2.012 2.051 2.114 10.8 1.905 1.962 2.013 2.060 2.100 2.167 11.0 1.946 2.005 2.058 2.107 2.150 2.221 11.2 1.987 2.048 2.103 2.154 2.199 2.275 11.4 2.028 2.091 2.148 2.201 2.249 2.328 11.6 2.068 2.133 2.193 2.249 2.298 2.382 11.8 2.109 2.176 2.239 2.296 2.347 2.436 12.0 2.150 2.219 2.284 2.343 2.397 2.490 12.2 2.191 2.262 2.329 2.390 2.446 2.543				1.833			
10.4 1.824 1.876 1.924 1.965 2.002 2.060 10.6 1.864 1.919 1.968 2.012 2.051 2.114 10.8 1.905 1.962 2.013 2.060 2.100 2.167 11.0 1.946 2.005 2.058 2.107 2.150 2.221 11.2 1.987 2.048 2.103 2.154 2.199 2.275 11.4 2.028 2.091 2.148 2.201 2.249 2.328 11.6 2.068 2.133 2.193 2.249 2.298 2.382 11.8 2.109 2.176 2.239 2.296 2.347 2.436 12.0 2.150 2.219 2.284 2.343 2.397 2.490 12.2 2.191 2.262 2.329 2.390 2.446 2.543	10.2	1.783	1.833	1.878		1.953	
10.6 1.864 1.919 1.968 2.012 2.051 2.114 10.8 1.905 1.962 2.013 2.060 2.100 2.167 11.0 1.946 2.005 2.058 2.107 2.150 2.221 11.2 1.987 2.048 2.103 2.154 2.199 2.275 11.4 2.028 2.091 2.148 2.201 2.249 2.328 11.6 2.068 2.133 2.193 2.249 2.298 2.382 11.8 2.109 2.176 2.239 2.296 2.347 2.436 12.0 2.150 2.219 2.284 2.343 2.397 2.490 12.2 2.191 2.262 2.329 2.390 2.446 2.543 For each additional 0.2' depth:	10.4						
10.8 1.905 1.962 2.013 2.060 2.100 2.167 11.0 1.946 2.005 2.058 2.107 2.150 2.221 11.2 1.987 2.048 2.103 2.154 2.199 2.275 11.4 2.028 2.091 2.148 2.201 2.249 2.328 11.6 2.068 2.133 2.193 2.249 2.298 2.382 11.8 2.109 2.176 2.239 2.296 2.347 2.436 12.0 2.150 2.219 2.284 2.343 2.397 2.490 12.2 2.191 2.262 2.329 2.390 2.446 2.543	10.6	1.864	1.919	1.968	2.012	2.051	
11.0 1.946 2.005 2.058 2.107 2.150 2.221 11.2 1.987 2.048 2.103 2.154 2.199 2.275 11.4 2.028 2.091 2.148 2.201 2.249 2.328 11.6 2.068 2.133 2.193 2.249 2.298 2.382 11.8 2.109 2.176 2.239 2.296 2.347 2.436 12.0 2.150 2.219 2.284 2.343 2.397 2.490 12.2 2.191 2.262 2.329 2.390 2.446 2.543 For each additional 0.2' depth:		1.905					
11.2 1.987 2.048 2.103 2.154 2.199 2.275 11.4 2.028 2.091 2.148 2.201 2.249 2.328 11.6 2.068 2.133 2.193 2.249 2.298 2.382 11.8 2.109 2.176 2.239 2.296 2.347 2.436 12.0 2.150 2.219 2.284 2.343 2.397 2.490 12.2 2.191 2.262 2.329 2.390 2.446 2.543 For each additional 0.2' depth:	11.0		2.005		2.107	2.150	
11.4 2.028 2.091 2.148 2.201 2.249 2.328 11.6 2.068 2.133 2.193 2.249 2.298 2.382 11.8 2.109 2.176 2.239 2.296 2.347 2.436 12.0 2.150 2.219 2.284 2.343 2.397 2.490 12.2 2.191 2.262 2.329 2.390 2.446 2.543 For each additional 0.2' depth:							
11.6 2.068 2.133 2.193 2.249 2.298 2.382 11.8 2.109 2.176 2.239 2.296 2.347 2.436 12.0 2.150 2.219 2.284 2.343 2.397 2.490 12.2 2.191 2.262 2.329 2.390 2.446 2.543 For each additional 0.2' depth:							
11.8 2.109 2.176 2.239 2.296 2.347 2.436 12.0 2.150 2.219 2.284 2.343 2.397 2.490 12.2 2.191 2.262 2.329 2.390 2.446 2.543 For each additional 0.2' depth:							
12.0 2.150 2.219 2.284 2.343 2.397 2.490 12.2 2.191 2.262 2.329 2.390 2.446 2.543 For each additional 0.2' depth:							
12.2 2.191 2.262 2.329 2.390 2.446 2.543 For each additional 0.2' depth:	12.0		2.219			2.397	
For each additional 0.2' depth:							
	·	+0.0407	+0.0429	+0.0451	+0.0472	+0.0494	+0.0537

Inside Diameter Wall thickness	48" 5.00"	54" 5.50"	60" 6.00"	66" 6.50"	72" 7.00"	78" 7.50"
4.6	0.414					
4.8	0.472					
5.0	0.530	0.430				
5.2	0.588	0.492				
5.4	0.646	0.555				
5.6	0.704	0.617	0.509			
5.8	0.762	0.679	0.576			
6.0	0.820	0.742	0.643			
6.2	0.878	0.804	0.709	0.594		
6.4	0.936	0.866	0.776	0.665		
6.6	0.994	0.929	0.843	0.736	0.608	
6.8	1.052	0.991	0.909	0.807	0.683	
7.0	1.110	1.053	0.976	0.878	0.759	
7.2	1.168	1.116	1.043	0.949	0.834	0.699
7.4	1.226	1.178	1.109	1.020	0.909	0.778
7.6	1.284	1.240	1.176	1.091	0.985	0.858
7.8	1.342	1.303	1.243	1.162	1.060	0.938
8.0	1.400	1.365	1.309	1.233	1.135	1.017
8.2	1.458	1.428	1.376	1.304	1.211	1.097
8.4	1.517	1.490	1.443	1.375	1.286	1.177
8.6	1.575	1.553	1.510	1.446	1.362	1.257
8.8	1.633	1.615	1.576	1.517	1.437	1.336
9.0	1.691	1.677	1.643	1.588	1.512	1.416
9.2	1.749	1.739	1.710	1.659	1.588	1.495
9.4	1.807	1.802	1.776	1.730	1.663	1.575
9.6	1.865	1.864	1.843	1.801	1.738	1.655
9.8	1.923	1.927	1.910	1.872	1.813	1.734
10.0	1.981	1.989	1.977	1.943	1.889	1.814
10.2	2.039	2.051	2.043	2.014	1.964	1.893
10.4	2.097	2.113	2.110	2.085	2.039	1.973
10.6	2.155	2.176	2.177	2.156	2.115	2.053
10.8	2.213	2.238	2.243	2.227	2.190	2.132
11.0	2.271	2.300	2.310	2.298	2.265	2.212
11.2	2.329	2.363	2.377	2.369	2.341	2.292
11.4	2.387	2.425	2.443	2.440	2.416	2.371
11.6	2.445	2.487	2.509	2.511	2.491	2.451
11.8	2.503	2.550	2.576	2.582	2.566	2.531
12.0	2.561	2.612	2.643	2.653	2.642	2.610
12.2	2.619	2.675	2.709	2.724	2.717	2.690
12.4	2.677	2.738	2.776	2.795	2.792	2.770
12.6	2.735	2.800	2.843	2.866	2.868	2.849
12.8	2.793	2.862	2.909	2.937	2.943	2.929
13.0	2.852	2.925	2.976	3.008	3.018	3.008
13.2	2.910	2.987	3.043	3.079	3.094	3.088
13.4	2.968	3.049	3.110	3.150	3.169	3.168
13.6	3.026	3.111	3.176	3.221	3.244	3.247
13.8	3.084	3.174	3.243	3.292	3.320	3.327
14.0	3.142	3.236	3.310	3.363	3.395	3.407
14.2	3.200	3.298	3.376	3.434	3.470	3.486
12.4	3.258	3.361	3.443	3.505	3.545	3.566
For each additional 0.2' depth	3.200	2.00	2	2.000	2.0.0	2.000
3. – 35	+0.0580	+0.0623	+0.0667	+0.0710	+0.0753	+0.0796
	3.3300					,,,,,

Inside Diameter Wall thickness	84" 8.00"	90" 8.50"	96" 9.00"	102" 9.50"	108" 10.00"
7.8	0.795				
8.0	0.879				
8.2	0.963				
8.4	1.047	0.896			
8.6	1.131	0.984			
8.8	1.215	1.073	0.910	0.726	0.522
9.0	1.299	1.161	1.002	0.823	0.623
9.2	1.382	1.249	1.095	0.920	0.724
9.4	1.466	1.338	1.187	1.017	0.825
9.6	1.550	1.426	1.280	1.114	0.927
9.8	1.634	1.514	1.373	1.211	1.028
10.0	1.718	1.602	1.467	1.307	1.129
10.2	1.802	1.690	1.558	1.404	1.230
10.4	1.886	1.778	1.650	1.501	1.331
10.6	1.970	1.866	1.743	1.598	1.433
10.8	2.054	1.955	1.835	1.695	1.534
11.0	2.138	2.043	1.928	1.792	1.635
11.2	2.222	2.131	2.021	1.889	1.737
11.4	2.306	2.220	2.113	1.986	1.838
11.6	2.390	2.308	2.206	2.083	1.939
11.8	2.474	2.396	2.298	2.180	2.040
12.0	2.558	2.485	2.391	2.277	2.141
12.2	2.642	2.573	2.484	2.374	2.243
12.4	2.726	2.661	2.404	2.471	2.344
12.6	2.810	2.749	2.669	2.567	2.445
12.8	2.894	2.749	2.761	2.664	2.547
13.0	2.094	2.036	2.761	2.761	2.648
13.2	3.062	3.014	2.034	2.858	2.749
13.4					
	3.146	3.102	3.039	2.955	2.850
13.6	3.230	3.191	3.132	3.052	2.951
13.8	3.314	3.279	3.224	3.149	3.053
14.0	3.398	3.367	3.317	3.246	3.154
14.2	3.482	3.455	3.410	3.343	3.255
14.4	3.566	3.544	3.502	3.440	3.357
14.6	3.649	3.632	3.595	3.537	3.458
14.8	3.733	3.720	3.687	3.634	3.559
15.0	3.817	3.809	3.780	3.730	3.660
15.2	3.901	3.897	3.873	3.827	3.761
15.4	3.985	3.985	3.965	3.924	3.863
15.6	4.069	4.074	4.058	4.021	3.964
15.8	4.153	4.162	4.150	4.118	4.065
16.0	4.237	4.250	4.243	4.215	4.166
16.2	4.321	4.338	4.335	4.312	4.268
16.4	4.405	4.426	4.428	4.409	4.369
16.6	4.488	4.515	4.521	4.506	4.470
16.8	4.572	4.603	4.613	4.603	4.571
17.0	4.656	4.691	4.706	4.699	4.672
17.2	4.740	4.780	4.798	4.796	4.774
17.4	4.824	4.868	4.891	4.893	4.875
17.6	4.908	4.956	4.984	4.990	4.976
For each additional 0.2' depth:					
	+0.0839	+0.0883	+0.0926	+0.0969	+0.1012

TRENCH BACKFILL TABLE FOR ELLIPTICAL PIPES

EXAMPLE

Given: Pipe = 38" Rise x 60" Span, Storm Sewer

Average Depth, D = 4.6 ft. Trench Length = 82.5 ft.

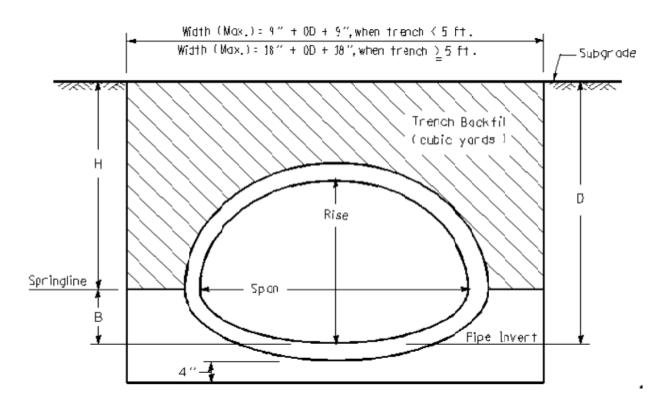
Find: Cubic Yards or TRENCH BACKFILL

Solution: From table, CY/LF = 0.645

x Trench Length = x 82.5 TRENCH BACKFILL = 53.2 CY

NOTE: If the field engineer measures a width of trench less than the maximum permitted, the values included herein will be of no value. The actual volume of TRENCH BACKFILL used will therefore have to be calculated using the following formula:

$$Cubic\ Yards = \left[(H'x\ W') - \left(\frac{Pipe\ End\ Area}{2} \right) x\ L'x\ 1/27 \right]$$


VOLUME OF TRENCH BACKFILL (CY) PER LINEAR FOOT OF ELLIPTICAL STORM SEWER PIPE

Eq. Round Size, in.	18	24	27	30	33	36	39	42
Rise, in.	14	19	22	24	27	29	32	34
Span, in.	23	30	34	38	42	45	49	53
Wall Thickness, in.	2.75	3.25	3.50	3.75	3.75	4.50	4.75	5.00
Pipe End Area, sq. ft.	3.03	5.08	6.49	7.82	9.31	11.19	13.24	15.12
1.4	0.061							
1.6	0.090							
1.8	0.118							
2.0	0.147	0.109						
2.2	0.176	0.143	0.114					
2.4	0.205	0.177	0.150	0.130				
2.6	0.233	0.210	0.186	0.169	0.135			
2.8	0.262	0.244	0.223	0.208	0.176	0.146		
3.0	0.291	0.277	0.259	0.247	0.218	0.191		
3.2	0.319	0.311	0.296	0.286	0.260	0.235	0.196	
3.4	0.348	0.345	0.332	0.326	0.301	0.280	0.243	0.216
3.6	0.377	0.378	0.369	0.365	0.343	0.324	0.290	0.266
3.8	0.406	0.412	0.405	0.404	0.385	0.369	0.337	0.316
4.0	0.434	0.446	0.441	0.443	0.426	0.413	0.384	0.366
4.2	0.463	0.479	0.478	0.482	0.468	0.458	0.432	0.416
4.4	0.492	0.713	0.708	0.710	0.692	0.679	0.649	0.632
4.6	0.743	0.758	0.755	0.761	0.745	0.735	0.708	0.693
4.8	0.783	0.803	0.803	0.811	0.797	0.790	0.766	0.754
5.0	0.823	0.848	0.805	0.861	0.850	0.846	0.824	0.815
5.2	0.863	0.892	0.898	0.912	0.903	0.902	0.883	0.876
5.4	0.903	0.937	0.945	0.962	0.956	0.957	0.941	0.937
5.6	0.943	0.982	0.993	1.012	1.008	1.013	0.999	0.998
5.8	0.982	1.027	1.040	1.063	1.061	1.068	1.058	1.059
6.0	1.022	1.071	1.088	1.113	1.114	1.124	1.116	1.120
6.2	1.062	1.116	1.136	1.163	1.167	1.179	1.174	1.182
6.4	1.102	1.161	1.183	1.214	1.220	1.235	1.233	1.243
6.6	1.142	1.206	1.231	1.264	1.272	1.290	1.291	1.304
6.8	1.181	1.250	1.278	1.314	1.325	1.346	1.349	1.365
7.0	1.221	1.295	1.326	1.364	1.378	1.402	1.408	1.426
7.2	1.261	1.340	1.373	1.415	1.431	1.457	1.466	1.487
7.4	1.301	1.385	1.421	1.465	1.483	1.513	1.524	1.548
7.6	1.341	1.429	1.468	1.515	1.536	1.568	1.583	1.609
7.8	1.381	1.474	1.516	1.566	1.589	1.624	1.641	1.670
8.0	1.420	1.519	1.563	1.616	1.642	1.679	1.699	1.732
8.2	1.460	1.564	1.611	1.666	1.695	1.735	1.758	1.793
8.4	1.500	1.608	1.658	1.717	1.747	1.790	1.816	1.854
8.6	1.540	1.653	1.706	1.767	1.800	1.846	1.874	1.915
8.8	1.580	1.698	1.753	1.817	1.853	1.902	1.933	1.976
9.0	1.619	1.743	1.801	1.868	1.906	1.957	1.991	2.037
For each additional 0.2 ft.								
	+0.040	+0.045	+0.048	+0.050	+0.053	+0.056	+0.058	+0.061

Eq. Round Size, in.	48	54	60	66	72	78	84	90
Rise, in.	38	43	48	53	58	63	68	72
Span, in.	60	68	76	83	91	98	106	113
Wall Thickness, in.	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00
Pipe End Area, sq. ft.	18.98	24.00	29.61	35.45	42.20	49.12	57.02	64.30
3.8	0.258							
4.0	0.312							
4.2	0.367	0.418						
4.4	0.579	0.489						
4.6	0.645	0.561	0.455					
4.8	0.711	0.633	0.532					
5.0	0.777	0.704	0.609	0.490				
5.2	0.843	0.776	0.686	0.572				
5.4	0.909	0.847	0.763	0.654				
5.6	0.975	0.919	0.841	0.736	0.614			
5.8	1.041	0.991	0.918	0.818	0.701			
6.0	1.107	1.062	0.995	0.900	0.789	0.653		
6.2	1.173	1.134	1.072	0.982	0.877	0.745		
6.4	1.239	1.205	1.149	1.064	0.964	0.838	0.694	
6.6	1.305	1.277	1.226	1.146	1.052	0.931	0.792	
6.8	1.371	1.349	1.304	1.228	1.140	1.023	0.891	0.768
7.0	1.437	1.420	1.381	1.311	1.227	1.116	0.989	0.871
7.2	1.503	1.492	1.458	1.393	1.315	1.208	1.087	0.974
7.4	1.570	1.564	1.535	1.475	1.402	1.301	1.185	1.077
7.6	1.636	1.635	1.612	1.557	1.490	1.394	1.283	1.180
7.8	1.702	1.707	1.689	1.639	1.578	1.486	1.381	1.283
8.0	1.768	1.778	1.766	1.721	1.665	1.579	1.480	1.386
8.2	1.834	1.850	1.844	1.803	1.753	1.671	1.578	1.489
8.4	1.900	1.922	1.921	1.885	1.841	1.764	1.676	1.593
8.6	1.966	1.993	1.998	1.967	1.928	1.857	1.774	1.696
8.8	2.032	2.065	2.075	2.049	2.016	1.949	1.872	1.799
9.0	2.098	2.136	2.152	2.132	2.104	2.042	1.970	1.902
9.2	2.164	2.208	2.229	2.214	2.191	2.134	2.068	2.005
6.4	2.230	2.280	2.307	2.296	2.279	2.227	2.167	2.108
9.6	2.296	2.351	2.384	2.378	2.367	2.320	2.265	2.211
9.8	2.362	2.423	2.461	2.460	2.454	2.412	2.363	2.314
10.0	2.428	2.494	2.538	2.542	2.542	2.505	2.461	2.417
10.2	2.494	2.566	2.615	2.624	2.630	2.597	2.559	2.520
10.4	2.560	2.638	2.692	2.706	2.717	2.690	2.657	2.623
10.6	2.626	2.709	2.770	2.788	2.805	2.783	2.755	2.726
10.8	2.692	2.781	2.847	2.870	2.893	2.875	2.854	2.830
11.0	2.758	2.852	2.924	2.953	2.980	2.968	2.952	2.933
11.2	2.824	2.924	3.001	3.035	3.068	3.060	3.050	3.036
11.4	2.891	2.996	3.078	3.117	3.156	3.153	3.148	3.139
For Each additional 0.2 f	•							
	+0.066	+0.072	+0.077	+0.082	+0.088	+0.093	+0.098	+0.103

Eq. Round Size, in.	96	102	108	114	120	132	144
Rise, in.	77	82	87	92	97	106	116
Span, in.	121	128	136	143	151	66	180
Wall Thickness, in.	9.50	9.75	10.00	10.50	11.00	12.00	13.00
Pipe End Area, sq. ft.	73.30	81.66	91.04	101.08	112.28	134.72	159.55
7.2	0.811						
7.4	0.919						
7.6	1.028						
7.8	1.137	0.970					
8.0	1.245	1.084					
8.2	1.354	1.197	1.025				
8.4	1.463	1.310	1.144				
8.6	1.517	1.423	1.262	1.071			
8.8	1.680	1.537	1.381	1.194			
9.0	1.789	1.650	1.499	1.318	1.119		
9.2	1.897	1.763	1.618	1.441	1.248		
9.4	2.006	1.877	1.736	1.564	1.377		
9.6	2.115	1.990	1.855	1.688	1.506		
9.8	2.223	2.103	1.973	1.811	1.635		
10.0	2.332	2.216	2.092	1.935	1.764	1.400	
10.2	2.440	2.330	2.210	2.058	1.893	1.539	
10.4	2.549	2.443	2.329	2.182	2.022	1.679	
10.6	2.658	2.556	2.447	2.305	2.151	1.818	
10.8	2.766	2.669	2.566	2.429	2.280	1.958	1.502
11.0	2.875	2.783	2.684	2.552	2.409	2.097	1.651
11.2	2.984	2.896	2.803	2.676	2.538	2.237	1.801
11.4	3.092	3.009	2.921	2.799	2.667	2.376	1.950
11.6	3.201	3.123	3.040	2.922	2.796	2.516	2.100
11.8	3.310	3.236	3.159	3.046	2.925	2.655	2.249
12.0	3.418	3.349	3.277	3.169	3.054	2.795	2.398
12.2	3.527	3.462	3.396	3.293	3.183	2.934	2.548
12.4	3.636	3.576	3.514	3.416	3.312	3.074	2.697
12.6	3.744	3.689	3.633	3.540	3.441	3.213	2.847
12.8	3.853	3.802	3.751	3.663	3.570	3.353	2.996
13.0	3.961	3.915	3.870	3.787	3.699	3.492	3.145
13.2	4.070	4.029	3.988	3.910	3.828	3.632	3.295
13.4	4.179	4.142	4.107	4.034	3.957	3.771	3.444
13.6	4.267	4.255	4.225	4.157	4.086	3.911	3.593
13.8	4.396	4.369	4.344	4.280	4.215	4.050	3.743
14.0	4.505	4.482	4.462	4.404	4.344	4.190	3.892
14.2	4.613	4.595	4.581	4.527	4.473	4.329	4.042
14.4	4.722	4.708	4.699	4.651	4.602	4.469	4.191
14.6	4.831	4.822	4.818	4.774	4.731	4.608	4.340
14.8	4.939	4.935	4.936	4.898	4.860	4.748	4.490
For each additional 0.2 ft. de							
	+0.109	+0.113	+0.119	+0.123	+0.129	+0.140	+0.149

TRENCH BACKFILL FOR ARCH PIPES

W	= Width of Trench (ft.)
D	= Depth from Subgrade to Pipe Invert (ft.)
Н	= Height of Trench Backfill Limits (ft.) = (D – B)
В	= Distance from Pipe Invert to Springline (ft.) (See Table)
L	= Length of Trench (ft.)
Α	= End Area of Pipe above Springline (Sq. ft.) (See Table)

$$Volume(CY) = [(H x W) - A] x L x 1/27$$

This formula shall be used by the designer or field engineer to determine the volume of TRENCH BACKFILL to be paid for when backfilling storm sewer trenches utilizing reinforced concrete ARCH PIPE. Maximum trench widths permitted by Article 550.04 of the Standard Specifications for Road and Bridge Construction are used.

Equivalent Round	Dica (in)	Span (in)	Wall Thickness (in.)	End Area Above Springline	D (f4 \
Size (in.)	Rise (in.)	Span (in.)	` '	(sq. ft.)	B (ft.)
15	11.00	18.00	2.25	1.08	0.39
18	13.50	22.00	2.50	1.42	0.50
21	15.50	26.00	2.75	1.94	0.52
24	18.00	28.50	3.00	2.77	0.49
27	22.50	36.25	3.50	4.20	0.64
30	22.50	36.25	3.50	4.20	0.64
36	26.63	43.75	4.00	6.04	0.71
42	31.31	51.13	4.50	8.20	0.84
48	36.00	58.50	5.00	10.67	0.97
54	40.00	65.00	5.50	13.07	1.08
60	45.00	73.00	6.00	16.34	1.22
66	54.00	88.00	7.00	23.76	1.42
72	54.00	88.00	7.00	23.76	1.42
84	62.00	102.00	8.00	32.10	1.55
90	72.00	115.00	8.50	39.65	1.98
96	77.25	122.00	9.00	46.07	2.03
108	87.13	138.00	10.00	59.07	2.24
120	96.88	154.00	11.00	71.05	2.61
132	106.50	168.75	10.00	72.95	3.79

EXAMPLE

Given: Pipe = 30" Round Size Eq. Rise = 22.5', Span = 36.25"

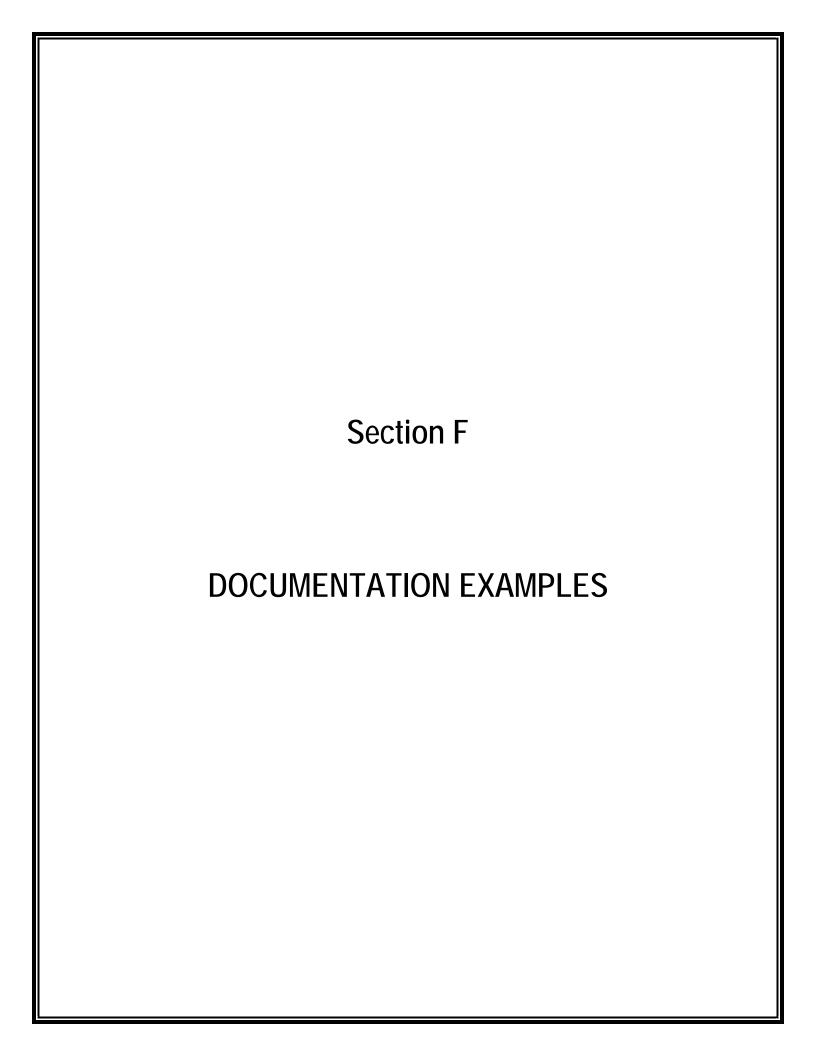
Average Depth, D = 4.7 ft.

Trench Length = 82.3 ft.

Width, W = 6.6 ft.

Find: Cubic Yards or TRENCH BACKFILL

Solution: From table, End Area, A = 4.20 sq. ft.


B = 0.64 ft.

Pay Height, H = D - B = 4.70 - 0.64 = 4.06 ft.

Volume: = [(H x W) - A] x L x 1/27

= [(4.06)(6.6) - 4.20](82.3)(1/27)

TRENCH BACKFILL = 68.9 CY

Resident Engineer's Diary

Airport:	Qu	ad City Inter	national				Date: 9/28/20	011	
Contract	tor: Ge	neral Constr	uction	IL Project	t No.: <u>MLI-123</u> 4	4	AIP Project No	o.: <u>3-17-0068-39</u>	
Tempera	ature: <u>3</u>	88-57°F	Wind: <u>10 r</u>	nph Weat	her Conditions:	Sunny			
Status:	⊠ Act	tive 🗌 Sus	spended		Jobsite Cond	ditions:		☐ Non-workable	
Control	ling Item	: AR15241	0 Unclassi	fied Excavation					
Workfor									
			'	- 10 hours, KLD	- 10 hours				
Conti	ractor (#	of people, ed	juipment, ho	ours):					
		truction, 15 r ckhoe, 3-Rol		urs e, 1-Bob-Cat					
Daily We		eneral Locati	on:						
		. Base Cse., Taxiway B	AR603510	Bit. Tack Coat, Al	R152410 Unclas	ssified Ex			
Instru	uctions to	Contractor /	Unusual Ev	rents:					
Fix so	oft subgra	ade, some ai	eas too higl	n and had to be tr	immed				
Verba	al Approv	als (official &	k item): ID	OT/Div. of Aero a	pproval to repair	r section	of unstable sub	ograde Undercut	_
1' x 2	25' x 50' s	ection of sub	grade, insta	III oversize rock a	nd CA6, Time ar	nd Materi	al		
Addit	ional Wo	rk (change o	rder, etc.):	N/A					
Offici	al Visitor	s: <u>IDOT/Di</u>	v. of Aerona	utics Constructio	n Engineer, Secr	retary of	Transportation		
Material	l s Deliv	/eries (mate	rial, quantity	, quality) / Testing	j (test, location, d	corrective	e action):		_
900 t	on HMA	- AR201610,	Emulsion T	ack Coat - AR600	3510				
Other:	N/A								
Calenda	r Days:	105	Awarded			DBE (Onsite?: (yes or		_
		80 25	Charged Remainin	g			Own force Own equipmer		
Submitte	ed By: 🥻	John P. Ad	lams	Firm:B.E.S	.T. Company		D	ate: 9/28/2011	

Diary Cover Sheet

AER 35 (Rev. 03/07/11)

Airport:	Quad (City International	Ye	ear: _2011
IL Project No.:	MLI-12	234	AIP Project N	No.: <u>3-17-0068-39</u>
Project Descriptio	n: <u>F</u>	Relocate Taxiway A		
Contractor Inform	ation:			
General Consti 500 E. Main St Rock Falls, IL ((815) 555-4155	61401			
Printed Name:			Signature:	John P. Adams
	☑ Resid	dent Engineer	cian	
If Found, Return	to:	Illinois Department of Transport	ation	
	-	Division of Aeronautics		
		1 Langhorne Bond Drive		
	·-	Springfield, IL 62707-8415		
Personnel Assign	ed to P	roject:		
<u>Name</u>		Initials (handwritten)		
Carl Wright		CRW		
Les Wrong		LNW		
Ken Doowit		KLD		

Phone No.

Quantity Book Cover Sheet

County

Section Quad City International

Route

District

Contract No. QU001 Job No. MLI-1234

Project 3-17-0068-39

Contractor General Construction

Address 500 E. Main St.

Rock Falls, IL 61401

(815) 555-4155

If found please return to the Illinois Department of Transportation

Address Division of Aeronautics

1 Langhorne Bond Dr.

Springfield, IL 62707-8415

Resident John P. Adams

County 161

Quantity Sheet

Section Quad City International

Route

Page 35 Item AR401610 Bituminous Surface Course Fund AR10P01

Plan Quantity 3397.000 Unit Measure TON Contract Unit Price 77.08 District 02

Contract No. QU001 Job No. SLT-81-001-02

Project 3-17-0068-39

Authorizations

Number	Date App'vd	Add	Deduct	Total
8	10/4/11	101.9		3,498.9

Cnty Const Sfty Quantity 161 AE03 3397.000

	Station to Station	Quantities Placed			Evidence of	Progress
Date	Location or	This Date	To Date	Pay Est	Material Inspection	Document Source
9/8/11	STA 62+03 → 118+27 NB	885.3	885.3		Daily Plant Report & Tickets & Test	Tickets
9/9/11	STA 118+27 → 175+79 NB	905.4	1,790.7		u u	
9/12/11	STA 175+19 → 119+27 SB	880.4	2,671.1		u u	u
9/13/11	STA 119+29 → 62+03 SB	892.3	3,563.4	#5/3397	u u	и
9/21/11	Deduct for Max Pay	-64.5	3,498.9	#6		
			FINAL			
	Max. Pay = $3,397 \text{ to}$					
	Quantity Placed 3,5					
	The surface was check					
Source o	f documentation			ı	I	1

for final quantity: rickets For all tonnage items
weighed on platform scales:
Scales checked by
Dept. Of Agriculture
Date on decal 7/22/11
Identification No. 125764
Scale Location Rock Island
Quarry

Inspection Reports

Date	Mistic Report No. or Source or Manufacturer	Amount	Total to Date	Transferred to Other Code or Remarks
Date	Godine of Manadatarer	Amount	to Bate	Other Gode of Remarks
		_		

County 161

Quantity Sheet

Section Quad City International

Route

Page 37 Item AR800004 Pavement Patching Fund AR10P01 Plan Quantity 327.800 Unit Measure SQ YD

Contract Unit Price 64.0000

District 02

Contract No. QU001 Job No. SLT-81-001-02

Project 3-17-0068-39

Authorizations

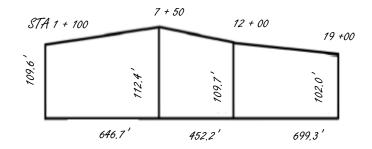
Number	Date App'vd	Add	Deduct	Total
3	7/28/11	35.4		363.2

Cnty Const Sfty Quantity 161 AE03 327.800

	Station to Station	Qı	antities Plac	ed	Evidence of	Progress
Date	Location or	This Date	To Date	Pay Est	Material Inspection	Document Source
7/11/11	STA 69+34 → 84+21 NB	83.2	83.2		Plant Report & Tickets	FB #3, p. 12
7/12/11	STA 96+13 → 130+01 NB	121.4	204.6			FB #3, p. 12
7/14/11	STA 125+16 → 74+95 SB	95.4	300.0			" , p. 16
7/15/11	STA 74+51 → 62+49 SB	63.2	363.2	#3/327.8		" , p. 24
				#4/363.2		
			FINAL			
	f de cum entetion					

Source of documentation

for final quantity: FB #3, p.8-24 for Qtys & Depths


Date:	10/25/2011		Initial(s)	Date	Airport:	Quad City International
-		Inspected by:	CRW	10/25/2011		
Contractor	or Sub.: Interstate Landscaping	Measured by:	CRW	10/25/2011	IL Proj. No.:	MLI-1234
		Calculated by:	CRW	10/25/2011		
Weather:	Sunny 90°	Checked by:	LNW	10/25/2011	AIP Proj. No.:	3-17-0068-39

Item Code #	FASC ID	Item	Location	Quantity and Units	Evidence of Material Inspection (Optional)	Posted in Q Book
AR901510		Seeding	Sta 1+00 TO 19+00 LT	4.5 Acre	CERT and results of Seed Analysis from Registered Seed Technologist	✓
AR908510		Mulching	Sta 1+00 TO 19+00 LT	4.5 Acre	VIS	✓

This is:		an estimated progress measurement	(item no.:
	\boxtimes	a final field measurement (item no.:	AR901510, AR908510

Remarks: (e.g., instruction to Contractor, special problems, sketches with dimensions for final measurements, computations, number of persons working, hours worked) Use reverse side, if needed.

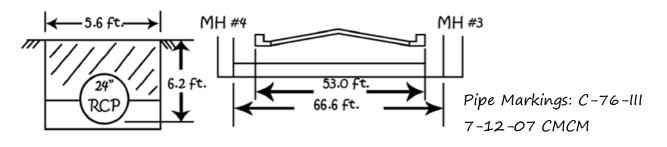
1/2(109.6 + 112.4) x 646.7 = 71,783.7 SF 1/2(112.4 + 109.7) x 452.2 = 50,216.8 1/2(109.7 + 102.0) x 699.3 = 74,020.9 196,021.4 SF 196,021.4 SF x <u>acre</u> = 4.5 AC 43,560 SF

Date: 8/15/2011 Initial(s) Date Airport: **Quad City International** LNW

Inspected by: Contractor or Sub.: Stan's Sewer Co. Measured by: LNW IL Proj. No.: 8/15/2011 MLI-1234

Calculated by: *LNW* 8/15/2011

Checked by: CRW 8/16/2011 AIP Proj. No.: 3-17-0068-39 Weather: Clear 70's


Item Code #	FASC ID	ltem	Location	Quantity and Units	Evidence of Material Inspection (Optional)	Posted in Q Book
AR701830		Trench Backfill	MH#3 to MH#4	55.2 CY	Approved source & TICK	✓
AR701424		24" RCP, CL III	MH#3 to MH#4	66.6 LF	LIST	√

8/15/2011

This is: an estimated progress measurement (item no.:

a final field measurement (item no.: AR701830, AR701424

Remarks: (e.g., instruction to Contractor, special problems, sketches with dimensions for final measurements, computations, number of persons working, hours worked) Use reverse side, if needed.

Trench Backfill:

Pay Length = 2' + 53' + 2' = 57.0'

Trench Width > Max Pay Width

Therefore Use Table

$$0.968 \frac{CY}{FT} x 57.0' = 55.2 CY$$

	Illinois Department of Transportation
0/15	

Date:	Pate: 9/15/2011				Initial(s)	Date	Airport:	Quad City International	
				Inspected by:	CRW	9/15/2011			
Contracto	r or Sub.:	: ACME	CONSTR.	Measured by:	CRW	9/15/2011	IL Proj. No.:	MLI-1234	
				Calculated by:	CRW	9/15/2011	-		
Weather:	Clear	90°		Checked by:		9/16/2011	AIP Proj. No.:	3-17-0068-39	
	-			<u> </u>		-	- 		
Item C	ode #	FASC ID	Item	L	ocation	Quantity and Units	Evidend	ce of Material Inspection (Optional)	Posted in Q Book
AR152			Unclassified Earth Excavation	2 + 60	TO 17 + 00	7728 CY	N/A		✓
This is:	⊠ an	estimated	progress measuremer	nt (item no.: AR1	52410		1)	l
	□ af	inal field n	neasurement (item no.:)	
Remarks:			Contractor, special prorse side, if needed.	oblems, sketches v	vith dimensions	for final measuren	nents, computations	s, number of persons working	g, hours
	Ź			BY COUNT: 49	0 LOADS HA	ULED, 70 LOAD	S FACH		
						S-24) & 3 CATS			
				TS-24: 4 x 70 L(`	•	` '		
						$LOAD \times 80\% = 2$			
				· · · · · · · ·	• • .,		<u> </u>		

AER 628 (04/23/09)

TOTAL = 7728 CY

Date: 5/5/20)11			Initial(s)	Date	Airport:	Quad City International	
			spected by:	LNW	5/5/2011			
Contractor or Sub.	: W.E. B	uild, Inc. M	easured by:	LNW	5/5/2011	IL Proj. No.:	MLI-1234	
		Ca	Iculated by:	LNW	5/5/2011	_		
Weather: Cloud	y 61°		Checked by:	CRW	5/5/2011	AIP Proj. No.:	3-17-0068-39	
Item Code #	FASC ID	Item	L	ocation	Quantity and Units	Eviden	ce of Material Inspection (Optional)	Posted in Q Book
AR150510		Eng. Field Office		Jobsite	0.19 LS	N/A		✓
This is:	n estimated	d progress measurement (iten	n no.:)	
⊠ a	final field n	neasurement (item no.: AR	150510)	
		Contractor, special problems	s, sketches v	vith dimension	s for final measuren	nents, computations	s, number of persons working,	hours

Job scheduled for 74 calendar days

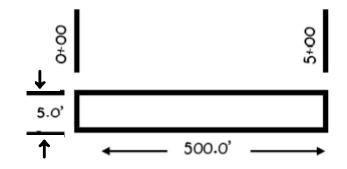
2 week progress payment from xx/xx/xxxx to xx/xx/xxxx

(Pay Estimate #X) >> 14/74 = 0.19 Lump Sum

Date: 9/15/2	2011			Initial(s)	Date	Airport:	Quad City Internati	ional	
			Inspected by:	CRW	9/15/2011				
Contractor or Sub	.: ACME	ľ	Measured by:	CRW	9/15/2011	IL Proj. No.:	MLI-1234		
		C	Calculated by:	CRW	9/15/2011				
Weather: Clear	75°		Checked by:	LNW	9/16/2011	AIP Proj. No.:	3-17-0068-39		
Item Code #	FASC ID	Item	L	ocation	Quantity and Units	Evidend	ce of Material Inspect (Optional)	tion	Posted in Q Book
AR602510		Bituminous Prime Coat		50 TO 22+50 nway 9/27)	2,131 Gallons	Bill of Lading	, ,		✓
This is: a	n estimated	d progress measurement (ite	em no.:)	
⊠ a	final field n	neasurement (item no.: A	R602510)	
		Contractor, special problen	ns, sketches v	vith dimensions f	or final measurem	ents, computations	s, number of persons	working, ho	urs
Weight	Ticket #26	604		Distributor	Loaded		23,700 lbs.		
		n Bill of Lading = 0.913		Distributor	After Use		7,500 lbs.		
9/15/20	11			Net Weigh	t of Prime Used		16,200 lbs.		
Weight o	f Water =	8.328 lbs./gal.		J					
,		Prime	e Used = 16,	200 lbs. X 1/8.3	328 X 1/0.913 = 2	2,131 gal.			

Date:	8/18/2011		Initial(s)	Date	Airport:	Quad City International
·	_	Inspected by:	KLD	8/18/2011		
Contractor	or Sub.: B&M Constr	Measured by:	KLD	8/18/2011	IL Proj. No.:	MLI-1234
	·	Calculated by:	KLD	8/18/2011		
Weather:	Sunny 80°	Checked by:	CRW	8/19/2011	AIP Proj. No.:	3-17-0068-39

Item Code #	FASC ID	Item	Location	Quantity and Units	Evidence of Material Inspection (Optional)	Posted in Q Book
AR501604		4" PCC Sidewalk	RT 0+00 – RT 5+00	2,500 SF	Plant Report & Tickets	✓

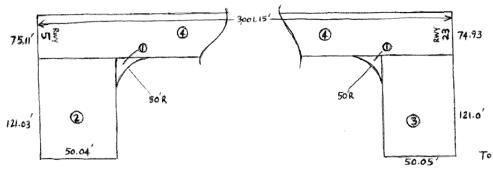

This is: an estimated progress measurement (item no.:

□ a final field measurement (item no.: AR501604

Remarks: (e.g., instruction to Contractor, special problems, sketches with dimensions for final measurements, computations, number of persons working, hours worked) Use reverse side, if needed.

Depth Checks

Sta. 0+00 = 4 1/8" 1+00 = 4 1/4" 2+00 = 4 1/4" 3+00 = 4 3/8" 4+00 = 4 1/8" 5+00 = 4 1/8"


5.0' x 500.0' = 2,500.0 SF

Date: 5/6/2011 Initial(s) Date Airport: **Quad City International** Inspected by: LNW 5/6/2011 Contractor or Sub.: Wemil Company Measured by: LNW IL Proj. No.: 5/6/2011 MLI-1234 Calculated by: LNW 5/6/2011 Checked by: KLD 5/6/2011 AIP Proj. No.: 3-17-0068-39 Weather: Sunny 60 F

Item Code #	FASC ID	Item	Location	Quantity and Units	Evidence of Material Inspection (Optional)	Posted in Q Book
AR401650		Bituminous Pav't Milling	Runway 5/23	26,482 SY	N/A	✓

This is: ☐ an estimated progress measurement (item no.:
☐ a final field measurement (item no.: AR401650

Remarks: (e.g., instruction to Contractor, special problems, sketches with dimensions for final measurements, computations, number of persons working, hours worked) Use reverse side, if needed.

Area Calcs.
$$r^2 - 4\pi r^2$$

① Fillet= 0.215 R^2
= 537.5/9
= 59.75Y
(2)59.7= 119.4 \$Y

2 50.04 × 121.03 672.9 SY

3 50.05' x 121.0' = 673.0 SY

Total = 119.4 + 672.9 + 673.0 + 25,016.3 = 26,481.6 SY

Actual Tons Delivered = 105

Pay Tons = 105/1.28 = 82.0 (Max Pay = 80 Tons x 108% = 86.4 Tons)

Inspector's Daily Report (IDR)

Date: 9/1/2	011		Initial(s)	Date	Airport:	Quad City International	
		Inspected by	r: <i>CRW</i>	9/1/2011	_		
Contractor or Sub	.: ACME	Measured by	r: CRW	9/1/2011	IL Proj. No.:	MLI-1234	
		Calculated by	ı: CRW	9/1/2011	_		
Weather: Cloud	dy, 50°F	Checked by	r: <i></i>	9/2/2011	AIP Proj. No.:	3-17-0068-39	
Item Code #	FASC ID	Item	Location	Quantity and Units	Evidend	ce of Material Inspection (Optional)	Posted in Q Book
AR901540		Turfing Lime	Entire Job	82.0 Tons	Tickets from app	proved source	✓
					Charleston Stone	e Co.	
					@ Charleston, IL	-	
					West Stockpile		
					See Wt. Tickets	in File #6	
This is: a	n estimated	progress measurement (item no.:		•	•)	
<u></u> а	final field m	easurement (item no.: AR901540)	
		Contractor, special problems, sketches se side, if needed.	with dimension	s for final measuren	nents, computations	s, number of persons working, h	ours
From Mis	stic (MIRB :	s/Acre to be applied to 20 acres. 25D): The 4 year conversion factor d = 4 Tons/Acre x 20 Acres x 1.28 =					

Field Book Example - Inside Cover & Index Pages

Field Book #3 **INDEX OF PAGES** If Found, Please Return to: **Unclassified Excavation Cross-Section Data** 1 Concrete Removal Meas. & Calcs. 2-3 Name: Illinois Department of Transportation **Temporary Fencing Measurements** 4 **Division of Aeronautics** 5 1 Langhorne Bond Drive 6-7 Crushed Aggregate Base Course Meas. Springfield, IL 62707-8415 **PCC Pavement Depth Checks** 8-11 217-785-8500 12-15 Pipe Underdrain Meas.

161

Quad City International

02

QU001

SLT-81-001-02

3-17-0068-39

This book is published on a fine 50% cotton-content ledger paper, specially treated for maximum archival service, and protected by a water resistant surface sizing.

Hot Mix Asphalt (HMA) Paving Daily Record

									Date: 4	4/11/11	
Airport: <u>ل</u>	awrenceville-	Vincennes		L Project I	No.: <u>/W/</u>	<u> -3700</u>		Mix Desig	ın No.: <u>7</u>	<u>436831SB</u>	ı
Pay Item N	lo., Descri	iption, Pa		1610, Bitumino							
Name: <u>//</u> /	I. B. Dunn				Cor	ntractor:	Krusty Ko	И			
$\overline{\triangleright}$	<i>I<u>, B, Dwn</u></i> ☑ Resident I	Engineer	☐ Resi	dent Technic	cian						
Paving Loc	cation: 🗡	Automobile par	king lot and	entrance road							
nspectors/						S Secretar	ru ok Transi	partation Rau	LaHaad (vie	ited knom 1	Oam-Noon I
Process C			.,	······································	2 - 7 - 7 - 7 - 7 - 7	-,	2 - 11 - 1		,	//	,,,,
Weathe	r Ti	me Te	emp. Co	nditions				Notes			
						ring until ac	ceptable ligi	ht and temper	ature condition	Ons were pr	resent
	090		°F Sunn		Began pavin	g					
	143	30 64	°F Par	tly Sunny							
Equipm	Equipment Manufacturer/Model						h Check	or Tire		Amplitu	ıde
Paver Mat'l Tra	on of or		er-Green SA	131		Reed T	ach	3000 VPM			
	own Roller	<i>N/A</i> · <i>N/A</i>				Reed T	ed Tach			☐ High ☐ Med ☐ L	
	y Roller	,,,,,	pac CC42A			Reed T		2400			Med □ Lo
Pneuma	atic Roller	Ingra	М			Tire Pr	essure	80 psi			
Finish R	Roller	Gallio	n V05 2-66b	, static mode							
Max. Vil	h 2	2400	VPM			Max.	240) fi	/min		
Roller S	heed	0	impacts/foot	_ =	240 ft./min	Paver	9			.9 = 2	24 ft/min
					1_	Speed					
Paving	Check	Time		in Truck		p. Behind	d Paver	Paver	Speed		-
		0800 1200	295 290		280 270						•
		1400	310		290]
Indepen	ndent Wei	ght Check	Needed ⁻	Гoday: 🖂	Yes	☐ No	Sca	le Decal N	lumber:	1127a	
Total R	unning Y	ield Chec	ks								
Starting	Station:	1+00 Entr	ance Road								
	Total		Length	Theo.	Yield		Total		Length	Theo.	Yield
_	Tons	Check	Placed	Tons	%	 -	Tons	Check	Placed	Tons	%
Time	Placed	Station	(1)	(2)	(3)	Time	Placed	Station	(1)	(2)	(3)
0930	17.0	2+00	100	14,9	114						-
1100	45.0	4+00	300	44.7	101						

(1) Length Placed = Starting Station – Check Station

(2) Theo. Tons = (Length x Mat Width x Lbs./Sq. Yd. X Mat Thickness) + (9 x 2000)

(3) Yield % = (Total Tons Placed ÷ Theo. Tons) x 100

Daily Yield Check

Daily Yield =
$$\frac{\text{Total Actual Tons Placed}}{(^{lbs}/_{SYx \ in})^{x} \ \text{Length (ft)} x \ \text{Width (ft)} x \text{Mat Thickness(in)} + 18000}} \ x \ 100 = \frac{\text{Total Actual Tons Placed}}{(^{lbs}/_{SYx \ in})^{x} \ \text{Length (ft)} x \ \text{Width (ft)} x \text{Mat Thickness(in)} + 18000}} \ x \ 100 = \frac{\text{Total Actual Tons Placed}}{(^{lbs}/_{SYx \ in})^{x} \ \text{Length (ft)} x \ \text{Width (ft)} x \text{Mat Thickness(in)} + 18000}} \ x \ 100 = \frac{\text{Total Actual Tons Placed}}{(^{lbs}/_{SYx \ in})^{x} \ \text{Length (ft)} x \ \text{Width (ft)} x \text{Mat Thickness(in)} + 18000}} \ x \ 100 = \frac{\text{Total Actual Tons Placed}}{(^{lbs}/_{SYx \ in})^{x} \ \text{Length (ft)} x \ \text{Width (ft)} x \text{Mat Thickness(in)} + 18000}} \ x \ 100 = \frac{\text{Total Actual Tons Placed}}{(^{lbs}/_{SYx \ in})^{x} \ \text{Length (ft)} x \ \text{Mat Thickness(in)} + 180000}} \ x \ 100 = \frac{\text{Total Actual Tons Placed}}{(^{lbs}/_{SYx \ in})^{x} \ \text{Length (ft)} x \ \text{Mat Thickness(in)} + 180000}} \ x \ 100 = \frac{\text{Total Actual Tons Placed}}{(^{lbs}/_{SYx \ in})^{x} \ \text{Total Actual Tons Placed}}} \ x \ 100 = \frac{\text{Total Actual Tons Placed}}{(^{lbs}/_{SYx \ in})^{x} \ \text{Total Actual Tons Placed}}} \ x \ 100 = \frac{\text{Total Actual Tons Placed}}{(^{lbs}/_{SYx \ in})^{x} \ \text{Total Actual Tons Placed}} \ x \ 100 = \frac{\text{Total Actual Tons Placed}}{(^{lbs}/_{SYx \ in})^{x} \ \text{Total Actual Tons Placed}}} \ x \ 100 = \frac{\text{Total Actual Tons Placed}}{(^{lbs}/_{SYx \ in})^{x} \ \text{Total Actual Tons Placed}}} \ x \ 100 = \frac{\text{Total Actual Tons Placed}}{(^{lbs}/_{SYx \ in})^{x} \ \text{Total Actual Tons Placed}} \ x \ 100 = \frac{\text{Total Actual Tons Placed}}{(^{lbs}/_{SYx \ in})^{x} \ \text{Total Actual Tons Placed}} \ x \ 100 = \frac{\text{Total Actual Tons Placed}}{(^{lbs}/_{SYx \ in})^{x} \ \text{Total Actual Tons Placed}} \ x \ 100 = \frac{\text{Total Actual Tons Placed}}{(^{lbs}/_{SYx \ in})^{x} \ \text{Total Actual Tons Placed}} \ x \ 100 = \frac{\text{Total Actual Tons Placed}}{(^{lbs}/_{SYx \ in})^{x} \ \text{Total Actual Tons Placed}} \ x \ 100 = \frac{\text{Total Actual Tons Placed}}{(^{lbs}/_{SYx \ in})^{x}} \ x \ 100 = \frac{\text{Total Actual Tons Placed}}{(^{lbs}/_{SYx$$

Paving Discrepancies:

Surface Variations								
Tested	by: <i>LF</i>	Station/Location	Station/Location	Station/Location				
	Check one below:							
	None found today							
	Found variations & finish roller was able to correct variations	3+00 to	3+50					
	Found variations that require corrective action or deduction.							

Issue Location Resolution							
Tearing	6+00 to 6+10	Temp too low behind paver (250°); issue corrected at plant					
		Directed contractor to remove and replace					

Notes / Calculations

Depth Checks, uncompacted

Proposed 2" Surface — assume additional thickness of 1/4" per inch uncompacted (2"x 1,25 = 2.5")

Signatures

Measured by: Lon Ferrigno

Calculated by: Michael Beign

Date: 4/11/11

Date: 4/11/11

Date: 4/12/11

Checked by: *U. B*

U. B. Dunn

Airport: Pay Item N	of T	Des CHOSINI VOISINITO							Mix Desiç	Date: _	g Daily	Record			
ے Paving Loc		V	las.												
nspectors/		Note:	Not	II appl	icable sp	ecs ai	re sh	iown							
Process C	ontrol														
Weathe	er	Time	Temp	Со	nditions					Notes					
			401-4,1	1											
			401-4.1	9		Not on	wet ba	se, base i	temp, ambie	np, ambient temp, lighting					
Equipm	nent		Manu	acture	r/Model			Tach	Check	or Tire		Amplitu	de		
Paver			401-4.4	401-4.	10			Reed T	ach						
Mat'l Tra								D4T					I Maria I III a		
Breakdo Vibrator								Reed T		401-4.11, 1	10 importa/6		Med Lo		
Pneuma	<u> </u>							Tire Pre		401-4.11 3.					
Finish R		<u> </u>								101-1,11 0,	Omph max sp	eeu, ure pr	essure		
Max. Vil Roller S	b.			'PM acts/foot	. =	ft./	min	Max. Paver Speed			t/min X	.9 =	ft/min		
Paving	Check		Γime	Temp.	in Truck		emp.		d Paver	Paver	Speed				
Indeper	ndent W	eight C	heck Ne	eded ⁻	Гoday: 🗌	Yes	[☐ No	Sc	ale Decal l	Number:	70-01, <u>(</u>	Doc Man		
Total R	unning	Yield (Checks												
Starting										1					
	Total Tons			ength laced	Theo. Tons	Yie			Total Tons	Check	Length Placed	Theo. Tons	Yield %		
	10115			(4)	10115	/0		- :	10115		riaceu	10115	70		

	Total		Length	Theo.	Yield		Total		Length	Theo.	Yield
	Tons	Check	Placed	Tons	%		Tons	Check	Placed	Tons	%
Time	Placed	Station	(1)	(2)	(3)	Time	Placed	Station	(1)	(2)	(3)

- (1) Length Placed = Starting Station Check Station
 (2) Theo. Tons = (Length x Mat Width x Lbs./Sq. Yd. X Mat Thickness) + (9 x 2000)
 (3) Yield % = (Total Tons Placed ÷ Theo. Tons) x 100

Page 1 of 2 AER 2529 (Rev. 03/30/11)

	Daily Yie	$eld = \frac{1}{(lbs/s)}$	Total Actual Tons Pla Yx in)x Length (ft)x Width (ft)xMa	at Thickness(in)÷18000 x 100) =				
Pa	ving Disc	repancie	es:						
				Surface Variations					
	Tested	by:		Station/Location	Station/Location	Station/Location			
		Cł	neck one below:						
		None fo	ound today						
			variations & finish roller was correct variations	5					
Found variations that require corrective action or deduction.									
			Other (segregation, joi	nt transitions/density,	tearing/shoving, etc	:.)			
	lss	sue	Location		Resolution				
				Joints 401-4.12, tearing Tabl	le 2 minimam lift thickness				
No	tes / Cal	culation	S						
	Thick Thick	, ness Determ ness Accept	401-4,16 ½" in grade, elevation of the construction documentation mance 401-4,17 see 401-4,15		replace				
Sic	gnatures								
	Measured by: Date:								
	lculated				Date:				
Ch	Checked by: Date:								

Total Actual Tons Placed

Daily Yield Check

Paving Loc Inspectors/	Residecation:	Note	Not	all appl	icable sp	ecs	are sh	nown		Mix [Pavii Date:	•	
Process C	ontrol													
Weathe	r	Time	Temp	o. Co	nditions					Not	es			
	_					44.0		/, , ,	/ /					
			402-4.1: ambient temp, no fog/rain, dry, wind											
Equipm	nent		Manı	ıfacture	r/Model			Tach	n Check	or Tir	е		Ampl	itude
Paver	f F	20.00	402-4.	4				Reed T	ach					
Mat'l Tra Breakdo			+					Reed T	ach				☐ High	☐ Med ☐ Lo
Vibrator			+	402-4,5	<u> </u>			Reed T		Static				
Pneuma	•			102 1,0	<u> </u>			Tire Pre	essure	Not A	llowed			
Finish R		<u> </u>	+ +							7700 7 (
Max. Vik Roller S	b.			VPM pacts/foot	. =		2 4 10	Max. Paver Speed			ft/i		x .9	= 35 ft./min 402-4.4
Paving (Check		Time	Temp.	in Truck		Temp.	Behind	d Paver	Pa	ver S	Speed		
J				•			402-4.8					-		
					Гoday: 🗌	Yes	s [No	Sca	ile Dec	cal Nu	ımber:	<u> N/A</u>	for PFC
Total Ru			Checks	8										
Starting						1 -					-			<u> </u>
	Total	_		Length	Theo.	Y	'ield		Total		1-	Length		
Time	Tons		eck	Placed	Tons		% (3)	Time	Tons		eck	Placed	Ton:	

Starting	Station:										
	Total	/	Length	Theo.	Yield		Total		Length	Theo.	Yield
	Tons	Check	Placed	Tons	%		Tons	Check	Placed	Tons	%
Time	Placed	Station	(4)	(2)	(3)	Time	Placed	Station	(1)	(2)	(3)
				/							
					\sim						
				/							
								/			
		_									

- (1) Length Placed = Starting Station Check Station
 (2) Theo. Tons = (Length x Mat Width x Lbs./Sq. Yd. X Mat Thickness) + (9 x 2000)
 (3) Yield % = (Total Tons Placed ÷ Theo. Tons) x 100

Page 1 of 2

AER 2529 (Rev. 03/30/11)

Daily \	Yield Che								
Daily Y	$'$ ield = $\frac{1}{(lbs)}$	Total Actual \sqrt{S}/SYx in)x Length (ft)x Width	Tons Placed (ft)xMat Th	ickness(in)÷18000 x 100) =				
	N/A for P	PFC							
Paving Di	iscrepano	cies:							
			Surfac	e Variations 402-4.	13				
Teste	ed by:			Station/Location	Station/Location	Station/Location			
	(Check one below:							
	None	found today							
		d variations & finish roll o correct variations	er was						
	Found	d variations that require ctive action or deduction	n.						
		Other (segregation	n, joint t	ransitions/density,	tearing/shoving, etc	2.)			
Is	ssue	Location			Resolution	•			
			402-4,11	ioints					
				o ! nonuniform texture, roller n	narks. bleedina. crackina/si	havina aaareaate crushina			
				is a critical problem to PFC	• • • • • • • • • • • • • • • • • • • •				
			0	/	7 0	0 1			
Notes / C	alculatio	ns							
	_								
		ation: construction documentatio							
Accepta	nce: visual	(402-4.14), thickness (402-	5.1)						
400.44	- // <i>0</i> :								
	3 Hauling:	1 , 11 , 11 , 11							
		d, tarped at all times							
90	min max haut	l time							
102.13	10 va tuallia	for at least 24 hours, etc.							
702-7,7	io no cruggio	for at teast 27 hours, etc.							
Signature	es								
Measured	d by:				Date:				
Calculate	d by:				Date:				
Checked	necked by: Date:								

Page 2 of 2

AER 2529 (Rev. 03/30/11)

PCC Paving Daily Record

				Date: _4/20/211
Airport: Lawrence	eville-Vincennes	IL F	Project No.: LWV-3700	Mix Design No.: A38121C1
· · · · · · · · · · · · · · · · · · ·			509, P.C.C. Pavement 9", SY	
Name: <i>U. B. D.</i>	un		Contractor:	Krusty Kon
⊠ Resi	dent Engineer	Resident Te	echnician	
Inspectors/Visito	ors: <u>Lou Ferrigno,</u>	Carl Weathers, M	ichael Beign, U.S. Secretary of	Transportation Ray LaHood
Paving Locatio	n			
Runway 9/27, Lane 1	(see April 18 paving	record diagram), Si	ta, 1+00 to 5+00	
Theoretical Con Volume, CY	crete = $\frac{Are}{}$	324 (SF) x t (in)	[(400' x 12') x 9"] ÷ 324 = 13	33.33 CY
Theoretical Men Curing Volume,		rea (SF) al/150 SF) (7	_ op Area + Side Area) ÷ 150 = [(46	00 x 12) + (2 x 400 x 9/12)] ÷ 150 = 36,1 gal.
Quality Assura	nce			
Weather	Time	Air Temp	Weather conditions	Notes
	5 am	32° F	Cloudy	Told contractor to delay until temps OK
	7 am	42° F	Partly Cloudy	Started paving
	1 pm	87° F	Clear, Windy 25mph, 90%	Told contractor to install fogger on paver
	Shrink Cra	cking Likely		ing at 1 pm per PCA nomograph
Truck: Spreade	(make, model , <u>Tata NanoHaub</u> r: <u>N/A</u> 1 Paver: Kenner	er GT	☐ ☐ Agitate ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	Non-agitate Ave. Haul <u>30</u> min.
Cure Spi		Beauti-cure XL	determined to meet	
Production	Monitoring			
See AER 7	7 or AER 15 for	% Air Slu	mp (in) Beams/Cylinde	ers Conc.Temp.°F
	ımp Check:			ues Sta 1+00 to 2+00 (see reverse for details)
_	Edge Testing:	⊠ ok □	N/A Notes: Issues fro	om Sta 1+00 to 2+00 but were corrected
	ction Testing		N1/A N1 /	
	Variation	⊠ OK □	N/A Notes:	
Concrete Yield Ch	eck $= \frac{1}{7}$	$\frac{Actual\ CY}{Cheoretical\ CY}$: 100 140 CY tickets ÷ 133,	3 CY theoretical = 105% (DK - paid SY)
Membra Daily Yie	ne Cure eld Check =	(Barrels)* (Theoretic	Gal/Barrell) $x\ 100$ Used (cal Gal	entire contents of 1 40-gal barrel ÷ 36,1 gal, theoretical = 110%
Measured by:	Lon Ferrigno			Date: 4/20/11
Calculated by:	Michael Beig	n		Date: 4/20/11
Checked by:	U. B. Dunn			Date: 4/22/11
Other Items Re	guired by Sne	cification		
Vertical Dev		Lateral Devia	ation Thicknes	s Strength Check

Airport: Pay Item Name:

cation Reference

PCC Paving Daily F	Re	cor	d
--------------------	----	-----	---

Date:	
Design No.:	,

Inspector Note: Not all applicable specs are shown **Paving Location**

Theoretical Concr Volume, CY	ete = $\frac{Ar}{}$	ea (SF) x t (in)				
volume, C1		324				
Theoretical Memb		Area (SF)			501-3.	17 A
Curing Volume, G	al (10	Gal/150 SF)			007-0,	// //
Quality Assurance	ce					
Weather	Time	Air Temp	Weather condit	ions Notes		
	501-3.9	501-3.9				
		501-3.1 C				
		501-3.17				
	Shripk Cr	a akina Likabu				2.4.0
		acking Likely	∐ Yes	U		-3.1 C
Equipment (n Truck:	-	-	☐ Agit	ato Non agi		7-3,1 min.
Spreader:			LJ Agii	ate 🗀 Non-agi	late Ave. Hauf	1111111.
Slip-form F	Paver:				_	
Cure Spray					501-3,	170 A
Production M	lonitoring					
See AER 7 o	or AER 15 for	% Air Slu	ump (in) Beams	/Cylinders Con	c.Temp.°F	
Edge Slum	p Check:		N/A Notes:		501-3	3.10 B
Straight-Ed	dge Testing:] N/A Notes:			3,13 F
Post Product	ion Testing					
Surface Va	ariation] N/A Notes:		501-3.16, 507	1-3,22
Concrete [Daily	Actual CY	4.00			
Yield Ched	ck =	Actual CY Theoretical CY	x 100			
Membrane	. Cure	(Damala)	(Cal /Damall)			
Daily Yield		(Burrels)*	$(\underline{\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	100		
,		1116016	ticui Gui			
Measured by:				Date:		
Calculated by:				Date:		
Checked by:				 Date:		
Other Items Bess	uired by Sa	noification				
Other Items Requ						
Vertical Devia	tion <i>501-3,22</i>	Lateral Devi	ation 501-3,22 T	hickness *	Strength Check 501-3.7, 501-5	.3 B

Lateral Deviation 501-3,22

Thickness *

Strength Check 501-3.7, 501-5.3 B

* Airport Construction Documentation Manual Thickness Determination, 501-5.3 A

Agreement on Accuracy of Plan Quantities

Airport:	Quad City Interr	national	IL Project No.:	MLI-1234
AIP Project No.:	3-17-0068-39		BCM Contract No.:	QU001
Project Description:	Relocate Taxiwa	ay A		
Pay Item Description		Unit of Measurement	Pay Item Number	Quantity
Clearing		Acre	AR151410	
Clearing & Grubbing		Acre	AR151450	
Unclassified Excavation	l	C.Y.	AR152410	8,277
Common Excavation		C.Y.	AR152420	
Solid Rock Excavation		C.Y.	AR152430	
Borrow Excavation		C.Y.	AR152440	
Aggregate-Turf Paveme	ent	S.Y.	AR217510	
Bituminous Pavement C	Grooving	S.Y.	AR401640	
P.C.C. Pavement Groov	ving	S.Y.	AR501540	
Structural P.C. Concrete		C.Y.	AR610510	
Steel Reinforcement		LB.	AR610520	
Pavement Marking		S.F.	AR620510	
Tar Emulsion Seal Coat	t	S.Y.	AR625510	
Porous Backfill No. 1		C.Y.	AR705411	
Porous Backfill No. 2		C.Y.	AR705412	
Seeding		Acre	AR901510	2.3
Sodding		S.Y.	AR904510	
Topsoiling (from On Site	e)	C.Y.	AR905510	
Topsoiling (from Off Site		C.Y.	AR905520	
Mulching	,	Acre	AR908510	2.3
Trench Backfill		C.Y.	AR701830	
	(And the fo	ollowing items, as permi	tted by contract provision	ons):
On-Site Borrow		C.Y.	AR152441	150.0
			<u> </u>	
	red for the above it	tems and payment will be	made for the quantities sh	sions shown on the plans, no further nown in the contract except that if
	y shall, before any	work is started which wou	ld affect the measurement	Engineer as to the accuracy of the t, have the right to request in writing
Contractor (Name of	Firm) Genera	al Construction		
Sigr	nature		Title	Date
Department of Transp	ortation			
Objet Aims and Out of	on O Matadala E	ninon .	<u> </u>	
Chief Airport Constructi	on & iviateriais En	gineer Da ^s	ie	

Extra Work Daily Report

Airport:	Quad City International			Date:	5/1/2012	
Contractor:	Smith Construction Company					
IL Project No.:	MLI-2345	<i>F</i>	AIP Project No.:	3-17-0068	-45	
Report No.:	1	E	BCM Contract No.:	QU012		
Description and	Location of Work: Relocate Storm S	Sewer Secti	on Sta 00+30			
·						
		LABO	R			
	Name, Worker Classification			Total Hou	rs Worked	
Matt Reilly, Foreman				(
Tim Seitz, Laborer						
Bernie Henderson, Laborer				6		
Earl Roth, Labor John Graham, L				6		
Sarah Reid, Tea					5	
Jeanmarie Smitl				(3	
	EQUIPMENT USED			MATERIA	AL USED	
	Description:	Number		1117 (1 21 (1)	12 0025	
List Manufac	cturer, Model, Year Built, Capacity	of Hours		Description		Quantity
	814F Wheel Dozer (240hp)	6				
2006 Chevrolet	P/U Truck, 4x4 Crew Cab 1/2 Ton	6	24" RCP			64 ft.
2004 On-Hwy R	ear Dump Truck 4x4 Diesel 30KGVW	6				
REMARKS:						
APPROVED:	John P. Adams Resident Engineer Resident Tech	/	APPROVED: R.	L. Smith	actor's Representati	

Extra Work Daily Report

Airport:	Quad City International			Date:	5/2/2012	
Contractor:	Smith Construction Company					
IL Project No.:	MLI-2345		IP Project No.:	3-17-0068	-45	_
Report No.:	2	Е	BCM Contract No.:	QU012		
Description and	Location of Work: Relocate Storm S	Sewer Secti	on Sta 00+30			
·						
		LABO	₹			
	Name, Worker Classification			Total Hou	rs Worked	
Matt Reilly, Fore	eman			8	3	
Tim Seitz, Laborer				3		
Bernie Henderso	•			3		
Earl Roth, Labor John Graham, L				3		
Sarah Reid, Tea				8		
Jeanmarie Smith				8		
	EQUIPMENT USED			MATERIA	AI IISED	
				WAILINIA	AL USLD	
List Manufac	Description: cturer, Model, Year Built, Capacity	Number of Hours		Description		Quantity
	814F Wheel Dozer (240hp)	8				+
2006 Chevrolet	P/U Truck, 4x4 Crew Cab 1/2 Ton	8	Trench Backfill			48.6 tons
2004 On-Hwy R	ear Dump Truck 4x4 Diesel 30KGVW	8				
						4
						_
						1
						1
						+
REMARKS:			•			_1
_			DDD0\/55	4 0 :		
APPROVED: _	John P. Adams ☐ Resident Tech	A	PPROVED: <u>R.</u>	L. Smith	actor's Representativ	

Extra Work Daily Report

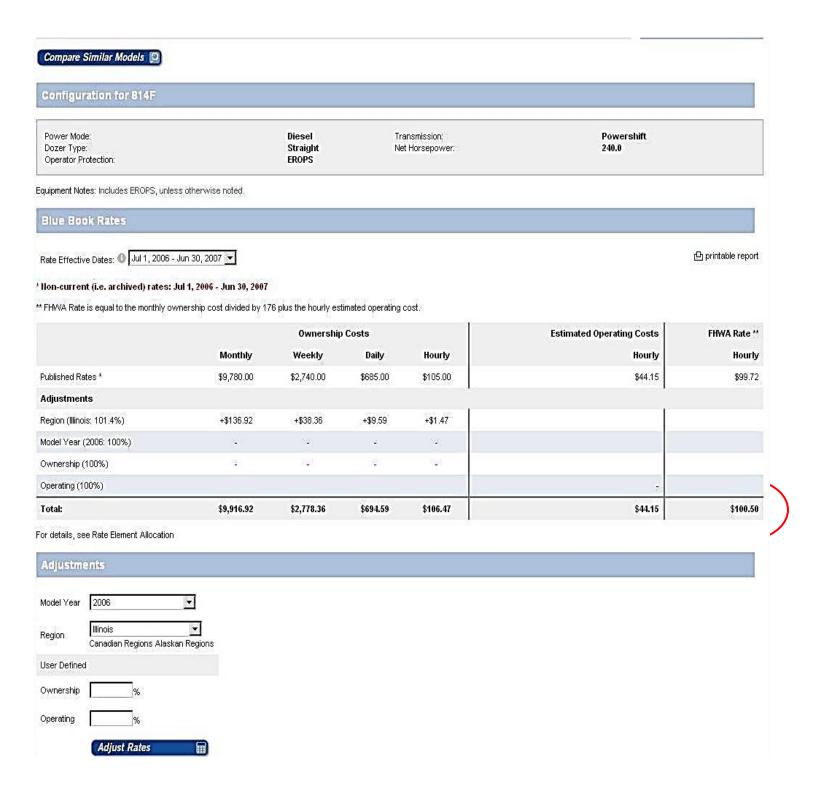
Airport:	Quad City International			Date:	5/3/2012	
Contractor:	Smith Construction Company					
IL Project No.:	MLI-2345	A	IP Project No.:	3-17-0068	-45	
Report No.:	_3	В	CM Contract No.:	QU012		
Description and	Location of Work: Relocate Storm S	Sewer Section	on Sta 00+30			
		LABOF	₹			
	Name, Worker Classification			Total Hou	rs Worked	
Matt Reilly, Fore	eman			8 Reg.	, 2 OT	
Tim Seitz, Labo				8 Reg.		
Bernie Henders Earl Roth, Labo				8 Reg.		
John Graham, L				8 Reg. 8 Reg.		
Sarah Reid, Tea				{		
Jeanmarie Smit	h, Operator			8	3	
-						
	EQUIPMENT USED			MATERIA	AL USED	
	Description: cturer, Model, Year Built, Capacity	Number of Hours		MATERIA Description	AL USED	Quantity
2006 Caterpillar	Description: cturer, Model, Year Built, Capacity 814F Wheel Dozer (240hp)	of Hours 8			AL USED	
2006 Caterpillar 2006 Chevrolet	Description: cturer, Model, Year Built, Capacity 814F Wheel Dozer (240hp) P/U Truck, 4x4 Crew Cab 1/2 Ton	of Hours 8 10	Portland Cement		AL USED	6 sacks
2006 Caterpillar 2006 Chevrolet	Description: cturer, Model, Year Built, Capacity 814F Wheel Dozer (240hp)	of Hours 8	Portland Cement Aggregate	Description	AL USED	
2006 Caterpillar 2006 Chevrolet	Description: cturer, Model, Year Built, Capacity 814F Wheel Dozer (240hp) P/U Truck, 4x4 Crew Cab 1/2 Ton	of Hours 8 10	Portland Cement	Description	AL USED	6 sacks 1.5 tons
2006 Caterpillar 2006 Chevrolet	Description: cturer, Model, Year Built, Capacity 814F Wheel Dozer (240hp) P/U Truck, 4x4 Crew Cab 1/2 Ton	of Hours 8 10	Portland Cement Aggregate	Description	AL USED	6 sacks 1.5 tons
2006 Caterpillar 2006 Chevrolet	Description: cturer, Model, Year Built, Capacity 814F Wheel Dozer (240hp) P/U Truck, 4x4 Crew Cab 1/2 Ton	of Hours 8 10	Portland Cement Aggregate	Description	AL USED	6 sacks 1.5 tons
2006 Caterpillar 2006 Chevrolet	Description: cturer, Model, Year Built, Capacity 814F Wheel Dozer (240hp) P/U Truck, 4x4 Crew Cab 1/2 Ton	of Hours 8 10	Portland Cement Aggregate	Description	AL USED	6 sacks 1.5 tons
2006 Caterpillar 2006 Chevrolet	Description: cturer, Model, Year Built, Capacity 814F Wheel Dozer (240hp) P/U Truck, 4x4 Crew Cab 1/2 Ton	of Hours 8 10	Portland Cement Aggregate	Description	AL USED	6 sacks 1.5 tons
2006 Caterpillar 2006 Chevrolet	Description: cturer, Model, Year Built, Capacity 814F Wheel Dozer (240hp) P/U Truck, 4x4 Crew Cab 1/2 Ton	of Hours 8 10	Portland Cement Aggregate	Description	AL USED	6 sacks 1.5 tons
2006 Caterpillar 2006 Chevrolet	Description: cturer, Model, Year Built, Capacity 814F Wheel Dozer (240hp) P/U Truck, 4x4 Crew Cab 1/2 Ton	of Hours 8 10	Portland Cement Aggregate	Description	AL USED	6 sacks 1.5 tons
2006 Caterpillar 2006 Chevrolet 2004 On-Hwy R	Description: cturer, Model, Year Built, Capacity 814F Wheel Dozer (240hp) P/U Truck, 4x4 Crew Cab 1/2 Ton	of Hours 8 10	Portland Cement Aggregate	Description	AL USED	6 sacks 1.5 tons
2006 Caterpillar 2006 Chevrolet 2004 On-Hwy R	Description: cturer, Model, Year Built, Capacity 814F Wheel Dozer (240hp) P/U Truck, 4x4 Crew Cab 1/2 Ton ear Dump Truck 4x4 Diesel 30KGVW	of Hours 8 10 8	Portland Cement Aggregate Form Lumber, 1"	Description x 6" x 14'	AL USED	6 sacks 1.5 tons
2006 Caterpillar 2006 Chevrolet 2004 On-Hwy R	Description: cturer, Model, Year Built, Capacity 814F Wheel Dozer (240hp) P/U Truck, 4x4 Crew Cab 1/2 Ton	of Hours 8 10 8	Portland Cement Aggregate Form Lumber, 1"	Description x 6" x 14'	AL USED	6 sacks 1.5 tons 24 each

GUIDELINES FOR PREPARING FORM AER 635

- 1. Extra work shall not be started until authorized in writing by the Engineer.
- 2. This form must be prepared daily and copies will be retained by both the Contractor and the Engineer.
- 3. Materials used on Force Account work which will be incorporated in the job must meet with satisfactory inspection.
- 4. The amounts of Labor, Equipment and Materials claimed by the Contractor on his submitted itemized bill which he prepares at the completion of the extra work must agree with the daily amounts shown on this form.
- 5. Refer to Article 70-05 of the Standard Specifications for Construction of Airports.

SAMPLE OF A FORCE ACCOUNT BILL USING NON-CURRENT BLUEBOOK RATES FOR THE PURPOSE OF SHOWING THE FORM TO BE FOLLOWED.

This sample bill does not establish any policy relative to the amount to be allowed for any particular item (materials, labor, and/or equipment) or as representing actual rates for insurance. Its sole purpose is to standardize the form of force account bills.


Route	Section	on			County			_ Auth. No.	-
Force Account Bill For	Additional F	Pipe and	Collars	3			Contract	Number	
Compare dates, hou all other informatio AER 635's								Payroll Amo	ount Eliaible
		Total	Hours		Insurance	Payroll	Earnings	For Unemple	
		S.T.	<u>O.T</u> .	Rate	<u>Amount</u>	<u>Amount</u>	to Date	<u>F.U.T.</u>	S.U.T.
Matt Reilly, Foreman	6 8 10	22	2	15.60	\$374.40	\$390.00	\$35.000.00	\$0.00	\$0.0
Tim Seitz, Laborer	6 8 10	22	2	12.50	300.00	312.50	8,000.00	0.00	312.5
Bernie Henderson, Laborer	6 8 10	22	2	12.50	300.00	312.50	6,000.00	312.50	312.50
Earl Roth, Laborer	6 8 10	22	2	12.50	300.00	312.50	7,100.00	212.50	312.50
John Graham, Laborer	6 8 10	22	2	12.50	300.00	312.50	9,100.00	0.00	312.50
Sarah Reid, Truck Driver	6 8 8	22		14.50	319.00	319.00	27,000.00	0.00	0.00
Jeanmarie Smith, Operator	6 8 8	22		17.60	387.20	387.20	40,000.00	0.00	0.00
Subtotals, Labor	r				\$2,280.60	\$2,346.20		\$525.00	\$1,250.00
* Laborer Pension 96 hours @ \$ * Operating Engin- 22 hours @ \$ Subtotal Note 1: 35% of \$2,389.02 Subtotal	0.32 eer pension an		e Funds			30.72 12.10 \$2,389.02 836.16 \$3,225.18			
	d Property rance, excludir	ıg	3% of \$2		79.36				
Payroll of Tru ** Federal Unemploy				,961.60 \$525.00	39.23 4.20				
*** State Unemploym				,250.00	85.00				
Federal Social Se			5% of \$2		179.48				
Total Payroll Addit	•		,,ο οι φ <u>-</u>	.,0 10.20	387.27				
Note 2: 10% of \$387.27					38.73				
• • • • • • • • • • • • • • • • • • • •						426.00			
Total Labor						\$3,651.18			
I hereby certify that						ayroll which	applies to the	above stated v	work
and that the rates	snown for taxe	o ana mo							

- * These are not suggested rates, as these rates vary widely between Union Locals. This is intended as an example only.
- ** Do not include costs for employees which have reached the annual ceiling for Federal Unemployment tax (F.U.T.), which is \$7,000 in this example.
- *** Do not include costs for employees which have reached the annual ceiling for State Unemployment Tax (S.U.T.), which is \$11,500 in this example.
- Note 1: This example shows the current Airport Standard Specification 90-05.B.1, which allows a 35% mark-up on labor, pension and welfare. The previous Specification allowed a 35% mark-up on labor only. Always confirm which Specification is in effect for a specific project.
- Note 2: Allowed under Airport Specification 90-05.B.2

•						
Equipment Expense	<u>1</u>	<u>2</u>	<u>3</u>	Total Hrs.	Rate	<u>Amount</u>
2006 Caterpillar 814F Wheel Dozer, (240 HP)	6	8	8	22	\$100.50	\$2,211.00
2006 Chevy Light Duty Pickup Truck 4X4 Crew Cab (1/2 ton)	6	8	10	24	\$11.86	\$284.64
2004 On-Hwy Rear Dump Truck, 4X4, Diesel (30,000 lb GVW)	6	8	8	22	\$35.22	\$774.84
Total Equipment Expense					-	\$3,270.48
Material Used						
24 in. R.C.P., 64 ft. @ \$4.30 per ft. (receipted invoice attached)						\$275.20
(Trench backfill, 48.6 tons @ \$0.85 per ton) (taken from stock)						43.31
Portland cement, 6 sacks @ \$1.60 (taken from stock)						9.60
(Aggregate, 1.5 tons @ \$1.40 per ton) (taken from stock)						2.10
(Form lumber, 24 pieces, 1x6, 14 feet long @ \$1.232 per piece) (receipted invoice attached)						29.57
Less salvage value of form lumber, 50%					_	(14.79)
Subtotal Material						\$342.99
Note 3: Plus 15% on \$342.99					_	51.45
Total Material						\$394.44
This is to certify that the material entered on this force account bill					struction Co.	
				(Com	pany)	
Ву				R.L.	Smith	
		\$	3,651.1	8		
Total Labor			3,270.4	Λ		
Total Labor Total Equipment Expense						
Total Equipment Expense Total Materials			394.4	4		
Total Equipment Expense Total Materials To	otal		394.4 7,316.1	4 0		
Total Equipment Expense Total Materials To Bond 0.75%	otal		394.4 7,316.1 54.8	4 0 7		
Total Equipment Expense Total Materials To Bond 0.75% Plus 10% of Bond		\$	394.4 7,316.1 54.8 5.4	4 0 7 9		
Total Equipment Expense Total Materials To Bond 0.75%		\$	394.4 7,316.1 54.8	4 0 7 9		
Total Equipment Expense Total Materials To Bond 0.75% Plus 10% of Bond		\$	394.4 7,316.1 54.8 5.4	4 0 7 9 6) (Admin	
Total Equipment Expense Total Materials To Bond 0.75% Plus 10% of Bond		\$	394.4 7,316.1 54.8 5.4	4 0 7 9 6 <i>John P</i>	. Adams	
Total Equipment Expense Total Materials To Bond 0.75% Plus 10% of Bond		\$	394.4 7,316.1 54.8 5.4	4 0 7 9 6 <i>John P</i>		

Note 3: Allowed under Airport Specification 9005B.3

Blue Book Rate from the **Equipment Watch** Website

Equipment Expense Rate Data

To Be Filled Out by the Contractor and Returned to the Resident Engineer: **Project** IL Project Number: BCM Contract Number: Contractor Point of Contact for the data submitted Company Name: ______ City: State: Zip Code: Telephone: Email: Submitted By: _____ **Description of Equipment** Type/Function: Make: ______ Model: _____ Year Manufactured: _____ Fuel Type: _____ Horsepower: _____ Size and/or Capacity: Remarks: ____ Cost of Equipment (For Equipment Not Listed in Blue Book) Purchase Price: _____ Year Purchased: _____ Estimated or Actual Annual Repair Cost: Estimated or Actual Annual Usage of Equipment in Hours per Year: Additional Comments:

The RE shall submit the completed form to Equipmentwatch.com.

This custom rate and all Time & Materials equipment rates shall be agreed to in writing before beginning the work per section 90-05.B.4.a of the Standard Specifications for the Construction of Airports (April 1, 2012 or current).

Authorization of Contract Changes

Authorization No.	. 2	FINAL	_ ?: ⊠ Ye	s 🗆 N	No Airport Name:	Quad City Inte	rnational
Date	6/15/2012				IL Project No.:	MLI-2345	
					Fed Project:	3-17-0068-45	
Contractor	Smith Construction Company				Contract No.:	QU012	
Address	Contractor's Address				County:	Rock Island	
Proj. Description	Install Class E Perimeter Fence				FASC ID:	AR00P01	
, ,							
The following cha	ange from the plans in constructing the a	bove airpo	ort improvem	ent is a	uthorized and directed.		
Item No. 3	Item Description		Quantity	A/D	Unit Price	Addition	Deduction
AR800100 '	Additional Pipe, Time and Mat.	LS	1,000	Α	7,376.46	7,376.46	
1							
Original Contract						¢ 7.276.46	•
Original Contract Previous Change					Page Subtotals	\$ 7,376.46 Net Change	\$ - \$ 7,376.46
Current Request:						14ct Orlange	Ψ 1,510.40
	ct Change to Date: \$				FASC-ID Subtotal	Net Change	\$ -
					Authorization Totals	_	
					Authorization Totals	Net Change	\$ -
Please Check O		:				4h a 4'	
	umstances said to necessitate the chanç ract was signed.	ge in perro	rmance were	e not re	asonably foreseeable at	tne time	
	· ·						
	nge is germane as to the original contrac	•					
	nge order is in the best interest of the ur etter of Explanation	nit of State	or local gov	ernmen	t and is authorized by la	W.	
Approved	etter of Explanation						
Consultant							
	Signature Date	е		Typed	l Name	Titl	e
Contractor				_			
	Signature Date	е		Typed	I Name	Titl	е
IDA			Mich	ael F V	Vilhelm, P.E.	Construction & M	aterials Section
	Signature Date	e	Willow		l Name	Titl	
				,,			
IDA			Sto		Long, P.E.	Airport Engineerir	•
	Signature Date	е		Typed	l Name	Titl	е
Note to Preparer	If additional space is needed, please u	100 2 0000	rata sheet				
Note to Freparer	For multiple FASC ID's, a separate Au			nuired			
	Each Authorization sheet must contain			•			
	The first addition of an item not in the	original co	ntract under	the fun			
	Credits are indicated as new pay items	s (*), with a	an added qu	antity (A	A/D=A), and a negative ι	unit price.	

Authorization of Contract Changes

					Page	of	2
Authorization I	No. 2	FINAL?:		□ No	Airport Name:	Quad City Internation	onal
Date	6/15/2012	•			IL Project No.:	MLI-2345	
		•			Fed Project:	3-17-0068-45	
Contractor	Smith Construction Company				Contract No.:	QU012	
Address	Contractor's Address				County:	Rock Island	
	Contractor's Address					A Doopool	
Proj. Descripti	on Install Class E Perimeter Fence				FASC ID:	AR00P01	
					_		
	SUMM	ARY OF P	ROPOSI	ED CHA	NGES		
Item No.			DESCRIP'	TION/COI	MMENTS		
AR800100	Additional Pipe, Time and Mat. Add	11LS				IDA Approval Date:	5/1/2012
	Relocate Storm Sewer Section – Work done	on Time and	d Material	basis.			

Material on Hand Affidavit

		Date:	September 1	1, 2011
Airport:	Quad City International	IL Project No.:	MLI-1234	
County:	Rock Island	AIP Project No.	: 3-17-0068-3	9
Contractor:	General Construction	BCM Contract I	No.: QU001	
Project Desc	cription: Relocation Taxiway A		-	
•	Itemiz	ed Material Statement		
	Item of Material	Quantity	Unit Cost	Amount
I -806 Windo	cone – 8' Lighted	4	1,760.49	7,041.96
MITL – Base		133	240.14	31,938.62
	ce Sign, 2 Character	3	1,248.28	3,744.84
	ce Sign, 3 Character	3	1,516.87	4,550.61
	ce Sign, 4 Character	6	1,869.33	11,215.98
	ce Sign, 5 Character	1	1,808.80	1,808.80
		1	Freight on Material:	: 0
I hereby cer	tify that the above material has been rec		Total:	
properly stor	red, and applicable material certifications	s and/or shop Allow	ed on Estimate No.:	3
drawings we	ere received, reviewed, and approved.	Proof of	Payment Received:	Ck.# 20327 & 20674
John P. a	dams			
× ⊠ Resident				
		Affidavit		
01-1(1111-	·	completed By Contractor	r)	
State of Illine	OIS			
County of _		SS.		
		being first duly swo	rn, deposes and say	ys that he/she is the dul
authorized r	epresentative of the			Company and, as such
has authority	y to make the following statement.			
representati	reby certify that the material herein ment ve of the Illinois Department of Transpor the contract captioned above.			•
	ther certify that the within statement is transferral in storage.	ue and correct, and that th	ne purpose of this a	ffidavit is to obtain
		Ву		
Subscribed	and sworn to before me this d	ay of	,	
			Notary Publ	lic
(Notary Sea	My Commission expires		_	
-				AED 40 /D 04/00
				AER 49 (Rev. 04/30

Statement of Material on Hand

Airport:	Quad City International	Date:	09/01/11	Page	1	of	1
IL Project No.:	MLI-1234	Contractor	General Construction				
AIP Project No.:	3-17-0068-39	Pay Estimate #:	10				
BCM Contract No.:	QU001	(Submit with Res	sident Engineer's Pay Estimate)			
Project Description:	Relocate Taxiway A						

		QUANTITY				
1	2	3 Total From	4 Paid for in	5 (3-4)	6	7 (5x6)
Description of Material	Delivery	Form(s)	Place to	Remaining in	Contractor's	
(Followed by Pay Items it will be used in)	Units	AER 49	Date	Storage	\$ Cost / Unit	\$ Value
L-806 Windcone – 8', Lighted AR107408	Each	4.00	0.00	4.00	\$1,760.4900	\$7,041.9600
MITL – Base Mounted AR125415	Each	133.00	0.00	133.00	\$240.1400	\$31,938.6200
Taxi Guidance Sign, 2 Character AR125442	Each	3.00	0.00	3.00	\$1,248.2800	\$3,744.8400
Taxi Guidance Sign, 3 Character AR125443	Each	3.00	0.00	3.00	\$1,516.8700	\$4,550.6100
Taxi Guidance Sign, 4 Character AR125444	Each	6.00	0.00	6.00	\$1,869.3300	\$11,215.9800
Taxi Guidance Sign, 5 Character AR125445	Each	1.00	0.00	1.00	\$1,808.8000	\$1,808.8000

Approval:	John P. Adams		09/01/11	Value of Material on Hand: Sum of Column 7 = _\$60,300.81
		☐ Resident Technician	Date	
		(Signature Required)		

AER 131 (07/20/11)

Statement of Material on Hand

Airport:	Quad City International	Date:	09/01/11	Page	1	of	1
IL Project No.:	MLI-1234	Contractor	General Construction				
AIP Project No.:	3-17-0068-39	Pay Estimate #:	10				
BCM Contract No.:	QU001	(Submit with Res	sident Engineer's Pay Estimate)			
Project Description:	Relocate Taxiway A						

		QUANTITY				
1	2	3 Total From	4 Paid for in	5 (3-4)	6	7 (5x6)
Description of Material	Delivery	Form(s)	Place to	Remaining in	Contractor's	
(Followed by Pay Items it will be used in)	Units	AER 49	Date	Storage	\$ Cost / Unit	\$ Value
L-806 Windcone – 8', Lighted AR107408	Each	4.00	0.00	4.00	\$1,760.4900	\$7,041.9600
MITL – Base Mounted AR125415	Each	133.00	65.00	68.00	\$240.1400	\$16,329.5200
Taxi Guidance Sign, 2 Character AR125442	Each	3.00	0.00	3.00	\$1,248.2800	\$3,744.8400
Taxi Guidance Sign, 3 Character AR125443	Each	3.00	2.00	1.00	\$1,516.8700	\$1,516.8700
Taxi Guidance Sign, 4 Character AR125444	Each	6.00	0.00	6.00	\$1,869.3300	\$11,215.9800
Taxi Guidance Sign, 5 Character AR125445	Each	1.00	1.00	0.00	\$1,808.8000	\$0.0000

Approval:	John P. Adams		09/01/11	Value of Material on Hand: Sum of Column 7 = \$39,849.17
		☐ Resident Technician	Date	
		(Signature Required)		

AER 131 (07/20/11)

COLUMN DESCRIPTIONS

Column 1	Description of Material (Followed by Pay Items it will be used in): Enter the material description as shown on the invoice, and the contract pay item(s) (number & description) in which the material will be incorporated.
Column 2	Delivery Unit: Enter the delivery invoice pay unit.
Column 3	Total from Form(s) AER 49: Enter the total amount of material delivered. Note: Do not report quantities until all required documentation has been received. See Airport Construction Documentation manual section Material Allowance.
Column 4	Paid for In Place to Date: Enter the amount, in delivery invoice pay units, of stockpiled material used in associated pay items completed and paid to date.
Column 5	Remaining in Storage: Automatic calculation of amount of stockpiled material remaining (Column 3 – Column 4). Amount will be in invoice delivery units.
Column 6	Contractor's Cost/Unit: Enter the cost per unit of delivered material used.
Column 7	Value: Automatic calculation of dollar value of unused stockpiled material (Column 5 x Column 6).

Truck Tare Weights

AER 1465 (Rev. 03/08/11)

			Date:	July 25, 2	2011	
Airport:	Quad City	International	IL Project No.:	MLI-1234	1	
County:	Rock Islan		AIP Project No.:			
-	General C		BCM Contract	QU001		
	tion: Kinde		Material:	CA6		
		I	. Waterial.			<u> </u>
C	uck or Number	Name on Truck		Tare Weight	Driver in	Truck?
	9	Lumley		20,000		☐ No
4	4	Lumley		20,500		☐ No
2	1	Lumley		20,800		☐ No
2	2	Lumley		21,000		☐ No
4	3	Lumley		20,100		☐ No
4	0	Lumley		20,000		☐ No
					☐ Yes	☐ No
					☐ Yes	☐ No
					☐ Yes	☐ No
					☐ Yes	☐ No
					☐ Yes	☐ No
					☐ Yes	☐ No
					☐ Yes	☐ No
					☐ Yes	☐ No
					☐ Yes	☐ No
					☐ Yes	☐ No
					☐ Yes	☐ No
					☐ Yes	☐ No
					☐ Yes	☐ No
when pay	quantities	trucks hauling material to Departn s are determined by platform scale		ation projects	must be estab	olished daily
<u>Departmen</u>	nt of Agricul	ture scale decal information:				
Date: 20	10		Certificate	35044		
L	es Wrong		John P. Adan	ns		
	· <u>J</u>	Inspector	⊠ Resident Engin		☐ Resident Tech	nician

Independent Truck Weight Check

Instructions: At random, select a loaded truck and obtain a loaded weight on an independent scale. Allow the truck to unload then obtain an empty weight.

Ticket Information						
Load Ticket Number	52718	Supplier Name	We Pave			
Loaded Weight (Gross)	71,100.00	City	Troy Grove			
Empty Weight (Tare)	29,480.00	Supplier Code	6212-01			
Load Ticket Weight (Net)	41,620.00	Scale Decal No.	004271			
		Decal Date	2/11/2011			
Independent Scale Inforr	mation					
Loaded Weight (Gross)	71,320.00	Scale Location	Riverstone / Troy Grove			
		Scale Decal No.	004495			
Empty Weight (Tare)	29,560.00	Decal Date	11/11/2011			
		Name of Truck	Sure Thing			
Calculated Net Weight	41,760.00	Truck Number	27523			
Tolerance Ticket Weight – Independent Weight Check Net Weight / Independent Weight Check Net Weight x 100 Tolerance for bituminous shall not exceed 0.50%.						
Calculated	John Adams Print Name Clearly	Initials _ <i>J</i> _f	Date <u>09/01/2011</u>			
Weighs Verified	Les Wrong Print Name Clearly	Initials <u>//</u> /	/ Date <u>09/01/2011</u>			

If the scale is out of tolerance send a copy of this form within 48 hours to the Office of Quality Compliance and Review, <u>Gene.Thomen@illinois.gov</u> and <u>DOT.ITWC@illinois.gov</u>. If you have any questions, contact Gene Thomen at (217) 558-4617 (office) or (847) 846-3132 (cell).

Resident Engineer shall file this document in the project files.

Ticket Tape Example, Aggregate Base Course

8-7-09		
AR208510		
AGG BASE CSE		
STA 1+20	0.	С
To 19+00		
	24,300.	+
Contract 90002	23,700.	+
	22,300.	+
	24,700.	+
	23,500.	+
	22,900.	+
	25,500.	+
	23,700.	+
	23,800.	+
	22,800.	+
60	24,000.	+
-8-	23,100.	+
φ ∞	23,600.	+
L SM L	24,100.	+
y	23,800.	+
	24,300.	
Calc by: JWS 8-7-09 Check by: <i>RH</i> 8-8-09	23,400.	
	24,300.	
	22,800.	
	25,600.	
	23,200.	
	24,000.	
	23,900.	+
	547,300	*
	LBS	
	·	
	547,300.	
	2,000	=
	273.65	*
Amust	tons	
Actual	= 220.9 - 206.1	=
Moisture	206.1	
	= 0.072	
Pay Wt.	= 273.65 × 1.06	
	1.072	
	<u>= 270.6</u> TONS	

This is an example of the documentation requirement for granular pay items paid on a tonnage basis.

This adding machine tape is to be securely bound around the truck tickets for each pay item for each day.

NOTE: Refer to Small Quantities provision in Section A of doc guide. No moisture correction required if less than 500 tons per day, however IDOT reserves right to perform moisture correction on any amounts delivered.